Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present work focuses on examining the batch removal of Fe (III) from water using powdered Peganum Harmala seeds, characterized as FT-IR. In this work, several parameters are measured, including contact time, pH, Fe (III) concentration, reaction temperature effect, and adsorbent dose effect. Fe (III) adsorption was assessed using a UV-vis spectrophotometer at a wavelength of 620 nm. The findings demonstrated a positive correlation between the dosage of adsorbent and Fe (III) ions removal, with an increase in the adsorbent dose corresponding to higher elimination of Fe (III) ions. Therefore, the Langmuir isotherm model yielded more accurate equilibrium data compared to the Frendulich model. The kinetic data were mostly analyzed using a pseudo-second-order model rather than a pseudo-first-order model. Thermodynamic parameters, including enthalpy (ΔH◦), entropy (ΔS◦), and free energy (ΔG◦), were calculated. The adsorption process was found to be exothermic. Overall, Peganum Harmala was a favorable adsorbent for removing Fe (III) from aqueous solutions.
EN
This study describes the creation of a low-cost silica material using a silicate extract as a precursor. This precursor is made from inexpensive palm frond waste ash through a simple calcination process at 500°C and a green extraction with water. Nitrogen adsorption-desorption, FTIR analyses, and transmission electron microscopy were used to characterize the samples. The surface area of the obtained mesoporous silica ash material was 282 m2/g1, and the pore size was 5.7 nm. For the adsorption of copper ions, an excellent adsorbent was obtained. The maximum copper ion adsorption capacity of this inexpensive silica ash-based adsorbent for removing heavy metal ions Cu(II) from aqueous solutions was 20 mg/g, and the eff ect of pH, temperature, and time on its adsorption capacity were also investigated. In addition, The adsorption isotherms were fi tted using Langmuir and Freundlich models, and the adsorption kinetics were evaluated using pseudo-first-order and pseudo-second-order models The results demonstrated that the synthesized adsorbent could effectively remove heavy metal ions from aqueous solutions at pH levels ranging from 2 to 5. The adsorption isotherms followed the Langmuir model, and the kinetic data fit the pseudo-second-order mode well. The thermodynamic results Negative values of G° indicate that the adsorption process was spontaneous, and negative values of entropy S° indicate that the state of the adsorbate at the solid/solution interface became less random during the adsorption process. According to the findings, prepared silica from palm waste ash has a high potential for removing heavy contaminating metal ions Cu (II) from aqueous solutions as a low-cost alternative to commercial adsorbents.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.