Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In times of water scarcity, groundwater is a vital resource that provides an alternate source of water for human consumption. In Iraq, the quality of rivers has been greatly affected by climate change and the dwindling availability of surface water. Examining and classifying the groundwater in this region is now vital. The present study sought to incorporate the groundwater property data (drinking purpose) with a geographic information system (GIS). Eleven variables were measured in 25 wells to investigate the physio-chemical properties around the Babylon province of Iraq. On the basis of the acceptability of groundwater for drinking, GWQI was categorized into four primary groups in the results. Approximately 28% of the twenty-five wells (1811.04 km2) are of excellent quality, 24% are of good quality (1552.3 km2), 44% are of low quality (2845.9 km2), and 4% are extremely contaminated (2587.2 km2). The average GWQI for the entire study region was 110.7, making it inappropriate for human consumption. It has been determined that approximately 52% of the groundwater from the examined wells can be deemed safe for consumption, although certain measurements surpass the permissible limits. To guarantee that the residents in these areas are supplied with water of superior quality and safety, treatment of the tested groundwater is recommended before use.
EN
The volume of the stilling basin can be reduced, energy can be dissipated, and floods can be contained with the help of spillways. The aim of this Computational Fluid Dynamics (CFD) study is to investigate how compound slopes change water flows through spillways. To measure turbulence, the Realizable k-ε model was used, and the multiphase volume of fluid (VOF) method was utilized to determine where air and water meet. Five models of spillways with different slopes (normal slope (MS1) = 30°, compound slope(MS2 and MS3) = 20°/39°, and compound slope (MS4 and MS5) = 39°/20°) were modelled and simulated using the ANSYS Fluent software to determine their flow characteristics. Numerical simulation results were compared to experimental results, and it was found that the CFD model captured the key flow aspects accurately. The numerical model carefully observes the several flow patterns (nappe, transition, and skimming) that emerged owing to variations in slope and geometry. When it comes to dissipating energy, models with a compound slope (39°/20°) do the best. When compared to the normal slope model (30°) with a step size of 10, the increase in energy dissipation is 14%. According to the findings, the TKE (turbulent kinetic energy) was elevated by the compound slope. The results of this research show that the spillway can be operated effectively and reliably under a wide range of flow conditions, fulfilling an important goal of the project.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.