Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Sole kamienne głównych cyklotemów cechsztynu z obszaru Polski były badane w celu skonstruowania wzorcowych profili bromowych dla poszczególnych ogniw solnych, umożliwiających ich identyfikację w obrębie wysadowych struktur solnych, gdzie często istnieją problemy z normalną sukcesją ogniw litostratygraficznych. Badania (strukturalno-teksturalne, geochemiczne i petrologiczne) przeprowadzono na facjach głębokowodnych utworów solnych, zarejestrowanych w materiale rdzeniowym z wybranych profili wiertniczych z obrzeża basenu permskiego w Polsce (sól kamienna cyklu PZ1) oraz w profilach wyrobisk kopalni soli Kłodawa (wysad kłodawski położony w osiowej części basenu, sole kamienne cykli PZ2, PZ3 i PZ4). Bromowy profil wzorcowy dla utworów soli kamiennej cyklu PZ1 (ogniwo Na1) cechuje się: (a) stopniowym wzrostem zawartości bromu w części dolnej, (b) utrzymującymi się na mniej więcej stałym poziomie wartościami w jego środkowej części (z lekką tendencją spadkową) i (c) gwałtownymi wahaniami zawartości bromu w części stropowej (szybkim spadkiem, wzrostem i ponownym spadkiem). Bromowy profil wzorcowy dla utworów soli kamiennej cyklu PZ2 (ogniwo Na2) cechuje się: (a) powolnym wzrostem zawartości bromu na długim odcinku w dolnej części profilu, odzwierciedlającym postęp ewaporacji, (b) nagłym wzrostem udziału bromu w części środkowej profilu, świadczącym o okresie izolacji obszaru sedymentacji, i (c) drobnymi wahaniami wysokiej zwartości bromu w wyżej położonych warstwach soli. Stwierdzono, że mające duże rozprzestrzenienie w osiowej części basenu cechsztyńskiego dwa ogniwa zubrowe: zuber brunatny (Na3t) i zuber czerwony (Na4t), charakteryzują się znacząco różnymi zawartościami bromu - wyższymi w przypadku ogniwa zubru brunatnego. Reasumując, pomimo zbliżonych niejednokrotnie przedziałów zawartości bromu, krzywe jego rozkładu dla poszczególnych ogniw solnych są odmienne i mogą być uznane za ich cechę diagnostyczną, szczególnie w przypadku braku jednoznacznych różnic w wykształceniu strukturalno-teksturalnym utworów solnych.
EN
Rock salts of the Late Permian (Zechstein) evaporite cycles in Poland were studied for construction of the representative bromine curves. Such standard bromine profiles could enable identification of individual salt units within the highly tectonized and deformed salt structures such as diapirs, where the normal successions of evaporite lithological components are uncommon. Structural-textural, geochemical and petrological studies (Tab. 1-2, 5-10) were realized on the deep-water facies of salt deposits, defined in the cores from selected wells located on the Poland Permian Basin (PPB) margins (Oldest Halite [Na1] unit of PZ1 cycle - Figs 1-5) and in sections from mine galleries of the Kłodawa salt mine (a salt diapir with rock salt units of PZ2, PZ3 and PZ4 cycles located in the axial part of PPB - Figs 7-9, 11-13,15-18). Standard bromine profile for the rock salt succession of PZ1 cycle (Na1 unit; Tab. 1-2, 5-6; Fig. 6) characterizes with: (a) gradual increase of Br content in the lower part of section, (b) almost constant content values in its middle part (with a subtle decrease tendency upward) and (c) rapid fluctuations of Br content in the top part of section (rapid decrease, following increase and fall). Vertical bromine content distribution in the standard bromine profile for the rock salt succession of PZ2 cycle (Na2 unit, Tab. 7; Fig. 10) evidences: (a) gradual Br content increase along a thick interval of lower part of the section, registering evaporation progress; (b) rapid increase of Br values in the middle section part, indicating a period of isolation and (c) fine fluctuations of generally high Br content in the upper part of succession. [...] Vertical bromine content distribution for the rock salt succession of PZ4 cycle (Na4 unit, Tab. 8; Fig. 16) characterizes with: (a) rapid Br content increase within the Underlying Halite (Na4a0) unit, (b) almost constant Br content in the Lower Youngest Halite (Na4a1) unit, (c) fall and following increase of Br values in the Clay Youngest Halite (Na4at) unit and significant Br content fluctuations within the Upper Youngest Halite (Na4a2) unit. The extended in the axial part of PPB two zuber (mixed clay-salt rocks) units (Tab. 9; Fig. 15, 17-18): the Brownish Zuber (Na3t) and the Red Zuber (Na4t) differ with distinctly various Br content intervals being the higher for the Brownish Zuber rocks (Tab. 9; Fig. 18). Concluding, although sometimes comparable values intervals of Br content in studied Zechstein salt deposits (Tab. 10), the curves of Br distribution for individual salt lithostratigraphic units are different and may be considered as a characteristic feature of each unit. So this parameter (Br content distribution) could be used to identify the lithostratigraphic units especially in the highly tectonized successions build of almost structurally homogeneous rock salt deposits e.g. in salt diapirs.
EN
The design of mines and repositories in salt rock requires the exploration of salt structures which should result in a geological model of the structure including the shape, subrosion, stratigraphical sequences, petrographical facies of the saline beds, geochemical change, gas and brine content, and internal structure. Thus, investigations as seismic exploration, boreholes, drillcore description, geophysical measurements, determination of layer orientation, spatial GPR-measurements as well as geochemical investigations have to be done. This must be followed by a geotechnical safety analysis of the mine or repository construction taking into consideration the possibilities for failure that could occur during excavation, operation, and post-operation phases, as well as measures to avoid such failure. To this end, geotechnical in-situ measurements (e.g. cavity closure, large-scale deformation of the salt rock, country rock and overburden, rock stress), laboratory investigations on material behaviour (e.g. stiffness, strength, creep) and geomechanical calculations are needed. An example of geological and geotechnical investigations of a domal salt structure including old mining rooms is presented. The analysis is based on geological modelling, finite-element calculations and geotechnical in-situ measurements to assess the stability of old mining rooms during the expected operation stage of the repository mine and to demonstrate the long-term integrity of the geological barrier.
PL
Zakres badania struktur solnych sprowadza się do powstania wstępnego geologicznego modelu struktur solnych zawierającego takie elementy jak kształt struktury solnej, suberozje, sekwencje stratygraficzne danej struktury, facje petrograficzne warstw solnych, zmiany geochemiczne, skład gazu i solanki jak również i ich struktury wewnętrzne. Model geologiczny uwarunkowany jest badaniami sejsmicznymi, odwiertami geologicznymi, ścisłym opisem rdzeni, pomiarami geofizycznymi, ustaleniem orientacji warstw, przestrzennymi GPR-pomiarami jak i badaniami geochemicznymi. W związku z pracami górniczymi jak i konstrukcją podziemnych magazynów gazu i radioaktywnych odpadów taki model geologiczny staje się podstawą dla geotechnicznej analizy bezpieczeństwa. Analiza ta powinna wziąć pod uwagę możliwość wystąpienia niepowodzeń podczas ekskawacji, eksploatacji, w fazach poeksploatacyjnych jak i również uwzględnić mierniki dla uniknięcia takich niepowodzeń. Dlatego też celem powinno być wykorzystanie pomiarów geotechnicznych in situ (np. konwergencja zapadlisk, obszerna deformacja pokładów solnych, skał granicznych, nakładu, naprężenia w pokładach skalnych) badań laboratoryjnych ustalających istotne parametry materiałowe (twardość, wytrzymałość, odkształcanie się) jak również i kalkulacji geomechanicznych. Przedstawione zostały przykłady badań geologicznych i geotechnicznych jak i przykład analizy geomechanicznej struktur solnych wykonane przez BGR w słupie solnym i w nieaktywnych wyrobiskach korytarzowych i pionowych. W oparciu o modelowanie geologiczne, kalkulacje elementów skończonych i pomiary geotechniczne wykonane in situ analiza ta ma za zadanie oszacowanie stopnia stabilności nieaktywnych wyrobisk podczas przewidywanej fazy eksploatacyjnej podziemnych magazynów gazu i radioaktywnych odpadów jak i zademonstrowania integralności daleko terminowych barier geologicznych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.