Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work explains a novel method of producing activated carbon using laser treatment. Acrylic coated glass samples were developed by padding a glass non-woven sheet in 30% acrylic fibre solution (PAN solution) from waste acrylic bathmats. Samples were then dried and cured at different temperatures. After curing, stabilisation was performed at 230 °C with a heating rate of 50 °C hr-1. Infrared laser irradiation was performed on the stabilised web using a commercial pulsed infrared laser for carbonisation. The resultant acrylic glass carbon composite (AGCC) was characterised with the help of x-ray diffraction analysis, energy dispersive w-ray, and a scanning electron microscope to determine the increase in crystallinity as well as the percentage of carbon and surface roughness of the carbon glass composites. The adsorption capacity of the activated carbon (AC) glass composite prepared was determined by changing process inputs like the concentration of dye, the amount of AC glass composite, the agitation speed and pH. The results were analysed through different adsorption isotherms. It was established that the Freundlich model can more effectively describe results due to the development of heterogeneous surface characteristics. The kinetics of adsorption were studied using first order and second order models.
PL
W artykule zaprezentowano nowatorską metodę wytwarzania węgla aktywnego za pomocą obróbki laserowej. Próbki szkła powlekanego akrylem opracowano przez wyściełanie arkusza włókniny szklanej 30% roztworem włókien akrylowych (roztwór PAN) z odpadów akrylowych mat łazienkowych. Próbki następnie suszono i utwardzano w różnych temperaturach. Po utwardzeniu przeprowadzono stabilizację w 230 °C z szybkością ogrzewania 50 °C/godz. Na stabilizowanej wstędze przeprowadzono naświetlanie laserem podczerwonym przy użyciu komercyjnego impulsowego lasera na podczerwień do karbonizacji. Otrzymany kompozyt akrylowo-węglowy (AGCC) scharakteryzowano za pomocą rentgenowskiej analizy dyfrakcyjnej, energii dyspersyjnej w promieniowaniu oraz skaningowego mikroskopu elektronowego w celu określenia przyrostu krystaliczności oraz zawartości procentowej węgla i chropowatości powierzchni. Zdolność adsorpcyjną przygotowanego kompozytu szklanego z węglem aktywnym (AC) określono zmieniając parametry wejściowe procesu, takie jak stężenie barwnika, ilość kompozytu szklanego AC, szybkość mieszania i pH. Wyniki przeanalizowano za pomocą różnych izoterm adsorpcji. Ustalono, że model Freundlich'a skuteczniej opisuje wyniki dzięki rozwojowi niejednorodnych charakterystyk powierzchni. Kinetykę adsorpcji zbadano za pomocą modeli pierwszego i drugiego rzędu.
2
Content available remote Hydrophilization of Polyester Textiles by Nonthermal Plasma
EN
Polyester is a popular class of material used in material engineering. With its 0.4% moisture regain, polyethylene terephthalate (PET) is classified as highly hydrophobic, which originates from its lack of polar groups on its backbone. This study used a parallel-plate nonthermal plasma dielectric barrier discharge system operating at medium pressure in dry air and nitrogen (N2) to alter the surface properties of PET fabrics to increase their hydrophilic capabilities. Water contact angle, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were utilized to analyze any effect from the plasma treatment. The wettability analysis revealed a reduction in the contact angle of more than 80% within 5 min for both discharges. Scanning electron microscopy analysis showed no microscopic damage to the fiber structure, guaranteeing that the fabrics’ structural integrity was preserved after treatment. AFM analysis showed an increase in the nanometer roughness, which was considered beneficial because it increased the total surface area, further increasing the hydrophilic capacity. XPS analysis revealed a sharp increase in the presence of polar functional groups, indicating that the induced surface changes are mostly chemical in nature. Comparing that of untreated fabrics to treated fabrics, a Increase in water absorption capacity was observed for air-treated and N2-treated fabrics, when these fabrics were used immediately after plasma exposure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.