Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study examines the performance of pelagic and benthic Malacostraca in two glacial fjords of west Spitsbergen: Kongsfjorden, strongly influenced by warm Atlantic waters, and Hornsund which, because of the strong impact of the cold Sørkapp Current, has more of an Arctic character. The material was collected during 12 summer expeditions organized from 1997 to 2013. In all, 24 pelagic and 116 benthic taxa were recorded, most of them widely distributed Arctic-boreal species. The advection of different water masses from the shelf had a direct impact on the structure of the pelagic Malacostraca communities, resulting in the clear dominance of the sub-arctic hyperiid amphipod Themisto abyssorum in Kongsfjorden and the great abundance of Decapoda larvae in Hornsund. The taxonomic, functional and size compositions of the benthic malacostracan assemblages varied between the two fjords, and also between the glacier-proximate inner bays and the main fjord basins, as a result of the varying dominance patterns of the same assemblage of species. There was a significant drop in species richness in the strongly disturbed glacial bays of both fjords, but only in Hornsund was this accompanied by a significant decrease in density and diversity, probably due to greater isolation and poorer quality of sediment organic matter in its innermost basin. Our results suggest that the diversity and distribution of benthic malacostracans in these two fjords are only distantly related to the different hydrological regimes; rather, they are governed by locally acting factors, such as depth, sediment type, the variety of microhabitats and the availability and quality of food.
2
Content available remote Can seabirds modify carbon burial in fjords?
EN
Two high latitude fjords of Spitsbergen (Hornsund 77°N and Kongsfjorden 79°N) are regarded as being highly productive (70 g and 50 gC m−2 year−1) and having organic-rich sediments. Hornsund has more organic matter in its sediments (8%), nearly half of it of terrestrial origin, while most of that in Kongsfjorden (5%) comes from fresh, marine sources (microplankton). Analysis of the carbon sources in both fjords shows that a major difference is the much larger seabird population in Hornsund-dominated with over 100 thousands pairs of plankton feeding little auks in Hornsund versus 2 thousand pairs in Kongsfjorden, and marine food consumption estimated as 5573 tonnes of carbon in Hornsund, versus 3047 tonnes in Kongsfjorden during one month of chick feeding period. Seabird colonies supply rich ornithogenic tundra (595 tonnes of C, as against only 266 tonnes of C in the Kongsfjorden tundra). No much of the terrestrial carbon, flushed out or wind-blown to the fjord, is consumed on the seabed – a state of affairs that is reflected by the low metabolic activity of bacteria and benthos and the lower benthic biomass in Hornsund than in Kongsfjorden.
3
Content available remote Estimation of zooplankton mortality caused by an Arctic glacier outflow
EN
The outflow of freshwater from underwater channels in the Kongsbreen tidal glacier in Kongsfjorden, Svalbard, 79oN, was measured as 138.8 m3 s-1 at the peak of the melting season. Experiments on local marine plankton mortality show that when exposed to salinities below 9 PSU, all copepods die within 15 minutes. We estimate that during 100 days of the melting season, as many as 85 tonnes wet weight (WW) of plankton is removed from the water column due to osmotic shock, which makes up 15% of the standing zooplankton biomass of the fjord. The dead zooplankton sinks after exposure to low salinities and is probably an important food source for scavenging benthic fauna in the fjord. This mechanism could be responsible for the high numbers of Onisimus caricus near the glacier front.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.