Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents the results of a study of the performance characteristics of ceramic grinding wheels during peripheral grinding of flat surfaces carried out using different methods of supplying cooling and lubricating fluid (coolant). In the study, T1 type grinding wheels were used, differing in the type of abrasive used in their construction. The abrasive consisted of mixtures with different volume percentages of: 1) grains of conventional white electro-corundum, 2) grains of submicrocrystalline sintered corundum produced by sol-gel technology, 3) microcrystalline sintered ceramic grains with RECERAMAX™ RT microclasters from RECKEL. Specimens made of 145Cr6 tool steel (60±1 HRC) were ground using coolant feeding by flood method and MQL (Minimum Quantity Lubrication) method. During the study, the components of grinding force (Fn, Ft), radial loss of the grinding wheel and roughness of the ground surface were measured, which made it possible to determine the volumetric wear of the grinding wheel Vs, the total grinding power P, and then calculate the grinding indicators G and Ks. The obtained values of the G index indicate that, regardless of the type of grinding wheel used, a higher relative grinding efficiency was obtained during grinding with the delivery of coolant by the MQL method. The highest values of this index were obtained in the case of the grinding process carried out with a grinding wheel containing RECERAMAX™ RT abrasive. The Ks index confirmed the best performance of the mentioned grinding wheel. Since its value also depends on the total grinding power P and the surface roughness parameter Ra, the grinding process carried out with this grinding wheel is additionally characterized by a better quality of the obtained surface and lower energy consumption.
EN
The article presents the results of the experimental verification of the deep hole boring bar tool model. The aim of the work was to obtain a verified boring bar tool model, which in further scientific research will be a starting point for creating a prototype of a tool with a new design, in which dynamic properties will be improved. The research was divided into two stages. In the first stage, modal studies of the model and the real object were carried out. The obtained discrepancy between numerical and experimental results below 8% allows to state that the model is characterized by dynamic properties occurring in the real boring bar. In the second stage of the research, static tests were carried out. The object was loaded with forces of 98.6 N, 195.0 N, 293.8 N. The obtained slight discrepancy in the results of numerical and experimental tests below 3% allows to state that the model reflects the static properties of the real boring bar. The high convergence of the theoretical and experimental results allows for the conclusion that the numerical model has been verified positively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.