Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Biodegradable materials represent a new class of biocompatible materials with applications in many medical cases where the support must be provided only for a certain period. In this article obtaining of ZnMgY alloy is presented along with some basic characteristic investigations like chemical composition (energy dispersive spectroscopy - EDS), microstructure (optical microscopy - OM and scanning and electron microscopy - SEM), immersion behavior in 10xDPBS (Dulbecco Phosphate Buffer Saline) solution (mass loss and surface degradation), electro-corrosion behavior (potentiostat with a three electrodes cell) and micro-hardness of the experimental alloy compared to cast Zn and ZnMg materials. The results present an improvement of micro-hardness of Zn by alloying with Mg and Y and a modification of corrosion resistance.
EN
The Fe-based alloy with manganese led to the appearance of new austenitic alloys, with the antiferromagnetic property pursued, resulting in compatibility with the magnetic field as that of magnetic resonance imaging. The corrosion resistance behavior of the biodegradable Fe-Mn-Si alloy was analyzed in a thermostatic chamber at 37±1°C for 24, 48 and 72 hours by immersing in Ringer solution. Also, the cast and laminated samples were subjected to electro-corrosion tests using a potentiostat equipment. Linear and cyclic potentiometry is presented for characterize the corrosion behavior of the experimental samples in electrolyte. Due to the interaction between the alloy and the liquid medium a change in the solution pH was observed. Structure analysis and chemical composition details of the surfaces were obtained using electron scanning microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.