Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study proposes a method that combines Histogram of Oriented Gradients (HOG) feature extraction and Extreme Gradient Boosting (XGBoost) classification to resolve the challenges of concrete crack monitoring. The purpose of the study is to address the common issue of overfitting in machine learning models. The research uses a dataset of 40,000 images of concrete cracks and HOG feature extraction to identify relevant patterns. Classification is performed using the ensemble method XGBoost, with a focus on optimizing its hyperparameters. This study evaluates the efficacy of XGBoost in comparison to other ensemble methods, such as Random Forest and AdaBoost. XGBoost outperforms the other algorithms in terms of accuracy, precision, recall, and F1-score, as demonstrated by the results. The proposed method obtains an accuracy of 96.95% with optimized hyperparameters, a recall of 96.10%, a precision of 97.90%, and an F1-score of 97%. By optimizing the number of trees hyperparameter, 1200 trees yield the greatest performance. The results demonstrate the efficacy of HOG-based feature extraction and XGBoost for accurate and dependable classification of concrete fractures, overcoming the overfitting issues that are typically encountered in such tasks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.