Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Plasma spraying is a process widely used to fabricate wear resistant coatings. However, various problems are associated with plasma spraying out of which poor bonding strength between the coating and the substrate and the high porosity in the as sprayed coatings are of major concern. In order to eliminate these problems and enhance wear performance, the laser remelting process has been used. The laser remelting of plasma sprayed Mo coatings alters the wear mechanism and improves the wear resistance. The wear mechanism and wear volume loss depend on the applied load, sliding speed and sliding distance. Hence, an effort has been made to investigate the effect of process parameters on volume loss using Response Surface Methodology (RSM) based mathematical models. The experiments were planned as per Central Composite Design (CCD). The investigations revealed that the applied load was the most dominant factor affecting the volume loss of the coating. The sliding speed, sliding distance and interaction effects were considered as the next important parameters influencing the volume loss. The investigation also reveals that, the wear volume loss depends on two wear mechanisms, one being the formations of grooves along surface tribo films and other being fracture of splats with delamination of the coating.
2
Content available remote Dry sliding wear behavior of Al2219/SiCp metal matrix composites
EN
The present study deals with investigations relating to dry sliding wear behaviour of Al 2219 alloy, reinforced with SiC particles of 0-15 weight percent in steps of 5. The unlubricated pin-on disc tests were conducted to examine the wear behavior of the aluminium alloy and its composites. The tests were conducted at varying load from 0 to 60 N and sliding speed of 1.53m/s, 3m/s 4.6m/s and 6.1m/s for a constant sliding distance of 5000 meters. The result showed that wear rates of the composites are lower than that of the matrix alloy and further decreased with the increase in SiCp content. As the load increases further cracking of SiCp particle occurs and a combination of abrasion, delamination and adhesive wear were observed. The samples were examined using scanning electronic microscope after wear testing and analyzed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.