Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Predicting sea surface salinity in a tidal estuary with machine learning
EN
As an indicator of exchanges between watersheds, rivers and coastal seas, salinity may provide valuable information about the exposure, ecological health and robustness of marine ecosystems, including especially estuaries. The temporal variations of salinity are traditionally approached with numerical models based on a physical description of hydrodynamic and hydrological processes. However, as these models require large computational resources, such an approach is, in practice, rarely considered for rapid turnaround predictions as requested by engineering and operational applications dealing with the ecological monitoring of estuaries. As an alternative efficient and rapid solution, we investigated here the potential of machine learning algorithms to mimic the non-linear complex relationships between salinity and a series of input parameters (such as tide-induced free-surface elevation, river discharges and wind velocity). Beyond regression methods, the attention was dedicated to popular machine learning approaches including MultiLayer Perceptron, Support Vector Regression and Random Forest. These algorithms were applied to six-year observations of sea surface salinity at the mouth of the Elorn estuary (bay of Brest, western Brittany, France) and compared to predictions from an advanced ecological numerical model. In spite of simple input data, machine learning algorithms reproduced the seasonal and semi-diurnal variations of sea surface salinity characterised by noticeable tide-induced modulations and low-salinity events during the winter period. Support Vector Regression provided the best estimations of surface salinity, improving especially predictions from the advanced numerical model during low-salinity events. This promotes the exploitation of machine learning algorithms as a complementary tool to process-based physical models.
EN
Sea levels variations in the upper part of estuary are traditionally approached by relying on refined numerical simulations with high computational cost. As an alternative efficient and rapid solution, we assessed here the performances of two types of machine learning algorithms: (i) multiple regression methods based on linear and polynomial regression functions, and (ii) an artificial neural network, the multilayer perceptron. These algorithms were applied to three-year observations of sea levels maxima during high tides in the city of Landerneau, in the upper part of the Elorn estuary (western Brittany, France). Four input variables were considered in relation to tidal and coastal surge effects on sea level: the French tidal coefficient, the atmospheric pressure, the wind velocity and the river discharge. Whereas a part of these input variables derived from large-scale models with coarse spatial resolutions, the different algorithms showed good performances in this local environment, thus being able to capture sea level temporal variations at semi-diurnal and spring-neap time scales. Predictions improved furthermore the assessment of inundation events based so far on the exploitation of observations or numerical simulations in the downstream part of the estuary. Results obtained exhibited finally the weak influences of wind and river discharges on inundation events.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.