Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The fundamental aim of this study was to investigate the growth responses of selected Jordanian cultivated barley (Hordeum vulgare L.) genotypes to the salinity stress. Twenty-six landraces and two recent cultivars were subjected to four levels of salinity (0, 50, 100 and 200 mM NaCl). The salt stress was found to influence the majority of germination ability such as germination % which ranged from about 80% to 100% (One-way ANOVA; p ≤ 0.05). Moreover, germination was statistically affected in correspondence to exposure time to salinity and in relation to genotypic composition of studied barley (two-row vs. six-row accessions) (Two-Way ANOVA; p ≤ 0.05). Early seedling growth traits were also found to decline with increasing salinity stress. Moreover, according to the growth parameters genotypes, M’ 1595, M’ 1593, Ir 1558, Ir 1631, Ir 1639, Mf 1545, and Mf 1548 were found to have better performance than others. On the other hand, the genotypes M’ 1593, M’ 1594, M’ 1595, Ir 1558, Ra 1552, Ra 1611, Mf 1616, Mf 1617, and Ma 1592 were most affected genotypes by salinity. The results of this study lead to the conclusion that the response to the salinity stress is complex, yet the comprehensive results found in this study provide a foundation for deeper exploration of diversity as well as the gene–trait relationships and their utilization in future barley improvement.
EN
The recycling of untreated dry biosolids, as costless biodegradable adsorbent for the removal of cadmium from aqueous phase was characterized. The adsorption of cadmium was reported to depend on initial pH, adsorbent dose, agitation time, and initial Cd concentration. The results of the batch experiments revealed that the maximum adsorption capacity of the untreated dry biosolids was 39.22 mg g-1 under optimum operating conditions (i.e. pH: 5, adsorbent dose: 2 g l-1, contact time: 16h). Adsorption reaches equilibrium after 16h, which can be attributed to both external surface adsorption (R2 = 0.86) and intraparticle dif usion (R2 = 0.98). The Langmuir isotherm model best described cadmium adsorption (R2 = 0.99) and the pseudo-second-order kinetic model was obeyed, suggesting that the mechanism involved was chemisorption. Biodegradability would make the recovery of adsorbed Cd an environmentally friendly process. Comparing the obtained findings with the related published results, it can be concluded that treating biosolids might be an unnecessary and costly procedure for recycling biosolids as an adsorbent for cadmium.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.