Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this study is to analyze the phenomena that occur in biological tissueduring photodynamic therapy (PDT). Under the influence of the laser, triplet oxygen istransformed into singlet oxygen, which is cytotoxic to cancer tissue. The impact of thelaser on the tissue may also be accompanied by changes in the thermophysical parameters,e.g., perfusion, which can affect the supply of oxygen to the tissue and, consequently,the outcome of the therapy. The proposed model uses the optical diffusion equation,the Pennes bioheat transfer equation, and reactions equations for PDT. The connectionbetween bioheat transfer and PDT models is taken into account through the respectiverelationships between perfusion rate, capillary blood velocity, and the maximum oxygensupply rate. Furthermore, a method is proposed to model abnormal vascular patterns inthe tumor subdomain. The boundary element method and the finite difference methodwere used in the numerical implementation stage.
EN
The purpose of the study was to analyze the combined model of bioheat transfer and oxygen distribution in tissue during exposition to the external heat impulse. The effect of temperature and thermal damage to the tissue on the values of its thermophysical parameters was taken into account. The variable value of the perfusion coefficient affects the blood velocity in the capillary and thus the distribution of the partial oxygen pressure in the tissue. Various models of the oxygen dissociation curves were also considered and a sensitivity analysis was performed for the parameters of the oxygen distribution model. In the numerical realization stage, the finite difference method and the shooting method were used.
EN
The aim of the study is to analyze photothermal and photochemical phenomena that occur during photodynamic therapy (PDT). In this type of therapy, under the influence of the laser, reactions take place related to the transformation of triplet oxygen form into its singlet form which is cytotoxic to the tissue. The increases in temperature resulting from the laser-tissue interaction during PDT are not big; however, they can lead to changes in tissue perfusion, which can affect oxygen delivery to the tissue. The proposed model uses optical diffusion equation, Pennes bioheat transfer equation, and reactions equations for PDT. The main findings of the analysis show the impact of temperature on the value of the perfusion coefficient and triplet oxygen distributions at the end of the treatment procedure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.