Tektura falista, materiał znany głównie z opakowań, jest znacznie bardziej wszechstronna niż się powszechnie uważa. W artykule omówiono historię tektury falistej oraz jej różnorodne zastosowania, takie jak opakowania, tymczasowe schronienia i meble. Artykuł przedstawia także innowacyjne zastosowania tektury falistej w budownictwie tymczasowym oraz jej rosnące znaczenie w kontekście zrównoważonego rozwoju, gospodarki o obiegu zamkniętym i recyklingu. Na zakończenie omówiono przyszłość tektury falistej jako materiału przyjaznego środowisku, zdolnego do zastępowania tworzyw sztucznych i wspierania innowacji w opakowaniach oraz konstrukcjach.
EN
Corrugated board, a material primarily known for packaging, is much more versatile than commonly believed. This article discusses the history of corrugated board and its diverse applications, such as packaging, temporary shelters, and furniture. Furthermore, it highlights innovative applications of corrugated cardboard in temporary construction and its growing importance in sustainable development, circular economy, and recycling. Finally, the future of corrugated cardboard is discussed as an eco-friendly material capable of replacing plastics and supporting innovations in both packaging and construction.
In various industries, rectangular tanks are commonly used for storing liquids and other materials. The design and optimization of these tanks are crucial for ensuring structural integrity and material efficiency. Traditional designs often utilize constant wall thickness, which does not align optimally with the stress distribution, leading to potential overuse of materials and increased costs. Recent studies have shown that tanks with variable wall thickness, such as trapezoidal cross-sections, can better match stress distributions, particularly under hydrostatic loads, resulting in more efficient use of materials. This research aims to build upon previous studies by introducing an advanced optimization algorithm based on the Trust Region Gradient Method to further refine the cross-sectional design of rectangular tanks. The primary objective is to minimize the material usage while maintaining structural safety and performance under various load conditions, including hydrostatic pressure and thermal effects. The proposed algorithm iteratively adjusts the tank's wall thickness, seeking an optimal configuration that reduces bending moments and material costs. Initial static calculations is verified using the finite difference method, emphasizing energy minimization conditions for elastic strain in bent plates on elastic foundations. This approach is compared with traditional discretization methods to validate accuracy. The trust region method is then applied to optimize the design, with a focus on achieving a balance between structural integrity and economic feasibility. Preliminary results indicate that the trust region gradient method can significantly enhance the design process, leading to substantial material savings and improved structural performance. The algorithm's effectiveness is demonstrated through case studies comparing tanks with constant and variable wall thickness. This research contributes to sustainable construction practices by promoting designs that use materials more efficiently and meet safety standards.
This paper addresses the optimization of the cross-section in rectangular above-ground tank walls, incorporating vertical ribs and an optional top ring. The objective is to minimize the volume of concrete used, while maintaining key performance criteria such as keeping the maximum tensile stress below the material’s allowable limit and minimizing deflections. The analysis is performed using the finite element method (FEM), with the optimization handled through a local gradient-based algorithm (trust region method), supported by a multistart technique to navigate the complexity of the design space and avoid suboptimal solutions. The results demonstrate that this approach effectively reduces concrete consumption without exceeding the tensile stress limits or causing excessive deflection, offering more efficient and cost-effective designs for rectangular tanks used in water storage applications. This method provides valuable insights into the balance between material usage and performance constraints, contributing to sustainable engineering practices.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.