In this research, we report on the synthesis of warfarin acetals by using Preyssler's anion, [NaP5W30O110]-14 and heteropolyacids (HPAs) catalysts. This reaction was performed using methanol and ethanol at reflux temperature conditions. Under these conditions we have excellent yields and high selectivity. Preyssler heteropolyacid catalyst were easily recycled recovery and reused without the loss of its catalytic activities. The synthesis of warfarin acetals has been achieved using the catalytic amounts of green, inexpensive and eco-friendly Keggin types heteropolyacids. The products were obtained in high yields.
A simple, clean and environmentally benign route to the enantioselective synthesis of (S)-2-(6-methoxynaphtalen-2-yl)propanoic acid, (S)-Naproxen 3 is described by using Preyssler heteropolyacid, H14[NaP5W30O110], as a green and reusable catalyst in water and in the presence of 1-(6-methoxynaphthalen-2-yl)propan-1-one 1, D-mannitol 2. The products were obtained in very good yields.
An efficient method for the preparation of 6,7-dimethoxyisatin and its derivatives was developed with good yield by using Preyssler-type heteropolyacid (HPA) as acid catalyst under green conditions. The comparison between Keggin type heteropolyacids, H3[PW12O40], H4[SiW12O40] and H4[SiMo12O40], H3[PMo12O40] and mineral acids with Preyssler's anion shows that the latter possess better catalytical activity than the other heteropolyacids and no degradation of the structure was observed.
Synthesis of acetaminophen at green condition and room temperature in the presence of the Preyssler type heteropolyacids has been investigated in order to contribute toward clean technology, which is the most important need of the society. All of the catalysts are recyclable and reusable.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.