In many parts of semiarid and arid regions, qanats are the leading supplier of water demand for agricultural and drinking usage. Qanat is an ancient collecting water system, and qanat water flow (QWF) varies in different seasons and decreases gradually by pumping groundwater wells. The present research utilized a set of supervised machine learning (ML) models to predict the QWF in the Chaghlondi Aquifer in Iran using monthly intervals of 14 years (2007–2021). The wavelet transform (WT) technique was also applied to enhance the QWF prediction quality of ML models for three lead months utilizing QWF, precipitation, evapotranspiration, temperature and GWL signal datasets as input. The five widely used ML models, i.e., artificial neural network (ANN), adaptive neuro-fuzzy inference system, group method of data handling (GMDH), gene expression programming and least square support vector machine, were applied and then compared with their hybrid wavelet models. To assess the performance of the models, the following four evaluation criteria were employed: correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), root means squared error (RMSE) and mean absolute error (MAE). The outcomes showed that the hybrid-wavelet ML considerably improved the standalone model performance. The best QWF predictions for a one-month ahead QWF prediction were acquired from the WT-GMDH model results from input scenario 3 with RMSE, MAE, R and NSE equal to 14.46, 10.78, 0.93 and 0.85, respectively. In addition, the result of this study indicates that ML's performance was improved by using wavelet transform for two and three months ahead of QWF predictions.
When high precision modelling is required, for example, with the estimation of suspended sediment load (SSL), data-driven models are preferred over physically-based numerical models for their real-time, short-horizon prediction ability. The investigation of SSL, as an important index in engineering practices assessment, like design and operation of the hydraulic structures not only shows the hydrological behaviour of the river, but also illustrates the valuable information about the water quality deterioration, surface-groundwater interaction and land-use changes of the watershed. The following data-driven methods were compared in order to predict SSL at the Seyra gauging station on the Karaj River in Iran: Fuzzy logic (FL), two adaptive neuro-fuzzy inference systems (i.e., ANFIS-GP and ANFIS-FCM models), an artificial neural network (ANN), and least squares support vector machine (LSSVM). Monthly average river flow and SSL data for 50 years were obtained from the Tehran Regional Water Authority (TRWA). The data was first divided into training, validation and test sets and the SSL was then predicted using the ANN, FL, ANFIS, and LSSVM models. The reliability of the applied models was evaluated by the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The results showed that the ANFIS models outperformed the ANN, FL, and LSSVM models for predicting SSL using the given input and output data. Overall, the performances of the artificial intelligence models used in the present study were satisfactory in predicting the non-linear behaviour of the SSL.
Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the inherent uncertainty that arises from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. Applying fuzzy set theory to groundwater-quality related decision-making in an agricultural production context, the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) were used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices. Rather than drawing upon physiochemical groundwater quality parameters, the present study employed widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended because it had the best performance in terms of accuracy when assessing groundwater quality using irrigation indices.
PL
Modelowanie jakości wód podziemnych odgrywa ważną rolę w procesach podejmowania decyzji dotyczących zarządzania zasobami wodnymi. W związku z tym należy opracować modele uwzględniające naturalną niepewność, która pojawia się od etapu pomiaru próbki, aż do interpretacji danych. Wykazano, że modele sztucznej inteligencji, w szczególności systemy wnioskowania rozmytego (FIS), są skuteczne w ocenie jakości wód podziemnych w odniesieniu do złożonych warstw wodonośnych. Zastosowanie teorii zbiorów rozmytych do podejmowania decyzji związanych z jakością wód podziemnych w kontekście produkcji rolnej, modele oparte na logice rozmytej Mamdaniego, Sugeno i Larsena (odpowiednio MFL, SFL i LFL) zostały wykorzystane do opracowania serii nowych, uogólnionych modeli, opartych na regułach rozmytych, do oceny jakości wody z wykorzystaniem powszechnie akceptowanych wskaźników nawadniania. Zamiast czerpać z jakościowych parametrów fizykochemicznych wód gruntowych, w niniejszym badaniu zastosowano powszechnie przyjęte wskaźniki rolne (np. kryteria nawadniania) podczas opracowywania modeli jakości wód podziemnych MFL, SFL i LFL. Za pomocą tych nowo opracowanych modeli, wygenerowano znacznie bardziej spójne wyniki niż z zastosowaniem diagramu Amerykańskiego Laboratorium Gleby (USSL), uwzględniono nieodłączną niepewność danych progowych. Modele te były skuteczne w ocenie jakości wód podziemnych do zastosowań rolniczych. Model SFL jest zalecany, ponieważ miał najlepszą efektywność pod względem dokładności w ocenie jakości wód podziemnych z użyciem wskaźników nawadniania.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.