Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A new and simple model for predicting soil erosion based on hole erosion tests
EN
Determination of erosion characteristics is of great significance to assess the erodibility of geomaterials that are subjected to seepage force. The erosion characteristics indicate soil particle removal in term of internal erosion that might occur in earthen structures. Hole erosion test (HET) is a simple and effective approach to determine erosion characteristics. It is noted that there are not many studies that focus on the development of a theoretical model describing the erosion characteristics and the associated process of soil particle detachment in HETs. The aim of this study is to propose a simple model based on Bernoulli’s principle to interpret erosion characteristics of geomaterials in HETs. An analytical equation was deduced from a physically based model incorporating Bernoulli’s principle and erosion constitutive law for internal erosion within a soil pipe driven by pressure gradient. The analytical equation could be applied to determine soil particle removal, radial erosion propagation, erosion coefficient, and critical shear stress. A series of HETs were performed under different flow rate to verify the proposed model. The obtained results demonstrated that the proposed model allowed for reasonably predicting the amount of soil particle removal and understanding erosion characteristics of soils through the HET.
2
Content available remote Investigation of infiltration rate for soil‑biochar composites of water hyacinth
EN
The objective of this short communication is to investigate the interactive effects of CIF, suction and volumetric water content (VWC) on infiltration rate for compacted soil–biochar (BC) composites (0%, 5% and 10%). The biochar was produced from an invasive weed Eichhornia crassipes. Soil parameters such as suction (ψ), VWC, CIF and infiltration rate were monitored simultaneously for 63 days (9 drying–wetting cycles) in those composites. This was followed by statistical modeling using artificial neural networks. Results showed that increase in WH BC content reduced the infiltration rates. The role of CIF in determining the infiltration rate reduced (50–38%) with the addition of BC to soil. Suction played an equal role (36–35%), both for bare soil and for WH BC composites, in determining the infiltration rate. Significance of VWC in determining rate of infiltration increases (14–27%) as the BC content increases. This is more likely, as the addition of BC enhanced the water retention capacity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.