Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Energy strategies of most developed countries include the sustainable development of all types of renewable energy, including energy generation from biomass. Co-digestion of sewage sludge and plant biomass has a number of synergetic effects, leading to increased digestion rate and output of biogas. The range of potentially effective co-digestion of sewage sludge with plant raw materials was considered on the example of the full-scale estimation study for Lviv WWTP, Ukraine. Substitution of the 25% of dry organic matter of sewage sludge by the same amount of plant raw matter can increase the total output of the methane at the biogas station by about 5.8%.
EN
The process of sorption of chromium(III) ions with a stationary sorbent layer of bentonite clays was investigated. The main advantages of using bentonites in water purification technologies are described: powerful geological reserves, cheap process of rock extraction, easy preparation for transportation and use, possibility of using waste sorbents in other technologies that is why there is no need in costly regeneration. The influence of various factors (process duration, an adsorbent layer) on the degree of wastewater purification from chromium ions, the effect of pumping speed on the dynamic capacity of the sorbent was studied and the effective volume was determined. The adsorption efficacy increases with the increase of the adsorbent layer, what can be explained by the development of the active sorption surface. As the initial concentration of chromium ions increases, the time of appearance of the first traces of the contaminant at the exit of the column increases, as well as the total time to channeling. The results of the studies indicate a higher adsorption capacity of modified bentonite with respect to Cr3+ ions compared to its natural formula. The cleaning efficacy of the solution with a concentration of chromium ions of 0.5 g∙dm–3 is increased by 5% when using 15 g of modified bentonite and 6,5% in the case one uses 20 g compared to the natural form.
EN
The article comprises synthesis of magnetically susceptible carbon sorbents based on bio raw materials – beet pulp. The synthesis was performed by one- and two-step methodology using FeCl3 as an activating agent. X-ray diffraction methods showed an increase in the distance between graphene layers to 3.7 Å in biocarbon synthesized by a two-step technique and a slight decrease in inter-graphene distance to 3.55 Å for biocarbon synthesized by an one-step technique. In both magnetically susceptible samples, the Fe3O4 magnetite phase was identified. Biocarbon synthesized by a two-step technique is characterized by a microporous structure in which a significant volume fraction (about 35%) is made by pores of 2.2 and 5 nm radius. In the sample after a one-step synthesis, a significant increase in the fraction of pores with radii from 5 to 30 nm and a decrease in the proportion of pores with radii greater than 30 nm can be detected. Based on the analysis of low-angle X-ray scattering data, it is established that carbon without magnetic activation has the smallest specific area of 212 m2∙сm–3, carbon after one-stage synthesis has a slightly larger area of 280 m2∙сm–3, and after two-stage synthesis has the largest specific surface area in 480 m2∙сm–3. The adsorption isotherms of blue methylene have been studied. Biocarbon ob-tained by two-step synthesis has been shown to have significantly better adsorption properties than other synthesized biocarbons. Isotherms have been analysed based on the Langmuir model.
EN
Hydrobionts are considered as highly potential source for bioproduction (including energy carriers and fertilizers) and many biotechnological processes that include hydrobionts, particularly their biomass as a substrate are used in different fields of energy, cosmetology, medicine, pharmaceutics, aquaculture, agriculture, forestry etc. Latest developments prove efficiency in applying anaerobic digestion for purifying wastewaters from organic pollutants with the help of macrophytes and microphytes in conducting biomethanogenesis. Many studies have established that it is possible to reach high level of lipid extraction from algae (to 95%) with the help of organic solvents (methanol, acetone, hexane, diethyl ether etc). Blue – green algae biomass has been scientifically proved to be a good source for methane, methanol, ethanol, propanol, isopropanol, biodiesel and other biofuel types production. Macroalgae and microalgae contain β- carotene, biotin, folic acid, fucoidans, lectins, phenolics, sulphated polysaccharides and other derived biologically active compounds that can be used in producing vitamins, have anti-ulcer, antioxidant, antibiotic, antifouling, immune modulatory and other properties. Cyanidioschyzon merolae, Ostreococcus lucimarinus, O. tauri, Micromonas pusilla have shown high potential for hydrogen production while Rhizoclonium sp. has been experimentally used as a bounding material in briquetting miscanthus granules, resulting in 20 % higher dynamic strength. The article is a literature review and the purpose of this work is to classify and systemize hydrobionts, reveal regularity of their growth, conduct critical analysis on existing biotechnologies on using separate representatives of aquatic biomes as a raw material and also to review ways of intensification for these biotechnologies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.