Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aimed to investigate the potential of plastic waste, specifically bubble wrap and packaging plastic, as a fuel source through pyrolysis process. The samples were analyzed using FTIR and GC-MS. The results showed that both samples contained alkanes and alkenes, with hydrocarbon fractions like those found in gasoline, kerosene, and diesel fuel. The pyrolysis process resulted in hydrocarbon fractions ranging from light to heavy fractions. The bubble wrap sample showed the highest percentage of hydrocarbon fraction in the kerosene range (C10–C13), with an area of 19.23%. In contrast, the packaging plastic sample showed the highest percentage of hydrocarbon fraction in the diesel range (C14–C20), with an area percentage of 19.67%. The calorific value of the pyrolysis products was also determined, with the bubble wrap sample having a higher value than that of gasoline, while the packaging plastic sample had a value close to that of kerosene. The results of this study suggest that plastic waste has the potential to be converted into fuel, which can contribute to sustainable development by reducing dependence on fossil fuels and reducing plastic waste. However, further refinement of the pyrolysis products is needed to meet commercial fuel standards.
EN
The condition of the Coronavirus Disease 2019 (COVID-19) pandemic in 2020 characterizing DKI Jakarta, Surabaya, and Yogyakarta Provinces which have a high population density in 2019, necessitates implementing Large-Scale Social Restrictions (LSSR) to control or break the chain of the spread of COVID-19. The LSSR policy that limits community activities, be it business activities, transportation, and the industrial sector, will impact social activities and the environment due to the reduced intensity of community activities. Therefore, this study aimed to determine changes in the carbon monoxide (CO) levels in Jakarta, Surabaya and Yogyakarta during the pre-pandemic and during the pandemic. The method used is the tropospheric CO concentration extracted from the Sentinel-5P satellite data. The CO data were retrieved and calculated using Google Earth Engine. The COVID-19 pandemic reduced CO level by 19.7%, 14.9%, and 21%, respectively. The paired t-test shows no significant difference from before the COVID-19 pandemic, with a significance of 0.05. The highest pre-pandemic average and total CO concentration levels were 0.042 and 1.0198 mol/m2 in Yogyakarta, respectively, whereas the lowest during the pandemic were 0.02845 and 0.6828 mol/m2 in Surabaya. Overall, the three cities have a weak relationship between CO level and precipitation as well as temperatures and CO level.
EN
This research explores the viability of converting discarded Polyethylene Terephthalate (PET) plastic waste into a valuable resource through the implementation of pyrolysis and refuse-derived fuel (RDF) technologies. The objective is to assess the potential of PET charcoal waste as an efficient source for RDF generation, surpassing the energy recovery and recycling potential of PET waste. The study introduces three RDF variants: RDF PET100, RDF PET50, and RDF PET0. RDF PET100 is comprised entirely of PET charcoal, RDF PET50 combines 50% PET charcoal with 50% wood debris, and RDF PET0 consists entirely of wood debris. Comprehensive assessments of water content, ash content, and calorific value were conducted to evaluate the quality of these RDF formulations. Results indicate that RDF PET100 exhibits a water content of 2.63%, ash content of 0.73%, and calorific value of 5,976 MJ/kg. Similarly, RDF PET50 showcases a water content of 3.6%, ash content of 1.05%, and calorific value of 5,587 MJ/kg. RDF PET0 presents a water content of 7.51%, ash content of 1.36%, and calorific value of 4,198 MJ/kg. The outcomes underline the potential of PET plastic waste repurposing through RDF and pyrolysis techniques. Particularly, RDF PET100 emerges as a high-caliber fuel option characterized by its minimal water and ash content, coupled with a substantial calorific value. This innovation holds promise in mitigating plastic waste challenges, particularly pertinent in the context of Indonesia.
EN
The tourism sector is one of the sectors that has been negatively affected by the COVID-19 pandemic. Increased waste generation is a significant problem that tourist areas must face during the COVID-19 pandemic. Therefore, to reduce the impact, research was carried out on waste management before and during the pandemic in regional tourism areas, especially in the eastern part of Java and Bali. This study aims to analyze the changes and composition of waste and during the COVID-19 pandemic in tourist areas in the Eastern Tourism Areas of Java and Bali. Collecting, processing data, and statistical analysis carry out the research method. Based on the study results, the waste generation generated in eight eastern regencies of Java and Bali experienced a change between -5.67% to 1.82%. Plastic waste increased by 27.61% during the pandemic, while mask waste increased by 1.23% in one area. Waste management also changed from -0.011% to 1.821%. The analysis results using ANOVA showed that the COVID-19 pandemic significantly affected the amount of waste generated by the eight tourist areas, with the main contribution caused by an increase in mask waste.
EN
Total Suspended Particulates (TSP) in ambient air contain metallic elements and can be inhaled by humans. Inhaled metal elements risk public health with long-term exposure because metallic elements are carcinogenic in the human body. This study aimed to analyze metallic elements and assess their risk to public health in the Bandung area and its surroundings. The metal elements analyzed in this research are Pb, Al, and Mn. Ambient air sampling was carried out in five industrial areas: Bandung Wetan, Buahbatu, Cibeureum, Padalarang, and Cimahi. High Volume Air Sampler (HVAS) is for sampling TSP in ambient air, and X-Ray Fluorescence (XRF) was used to analyze metallic elements. The results of the study showed that the Cimahi location gave the highest TSP level (126.7 g/m3) and the lowest is Padalarang (15.1 μg/m3). The metal elements concentrations, Pb, Al, and Mn were varied widely of 7.1–29.21 ng/m3, 1054.9–1700.1 ng/m3, and 8.91–14.79 ng/m3, respectively. Risk analysis was determined by calculating ADDinhale, Hazard Quotient (HQ), and Hazard Index (HI) to determine whether there is a potential non–carcinogenic effect on public health. Each industrial area gives an HI value > 1.0 and Buahbatu has the highest HI. This study proves that Pb significantly contributes to the increased risk of community exposure to non-carcinogenic effects.
EN
Waste in the archipelagic border area must be appropriately managed to maintain diplomatic relations. Indonesia’s Riau Islands Province is an archipelagic region in Indonesia with limited solid waste infrastructure development. The capacity of the waste infrastructure depends on the rate of waste generation and is influenced by the socioeconomic conditions of the community. This study aims to study the model for estimating the rate of waste generation in the Riau Islands. This study uses data before and during the Covid-19 pandemic in 2019 and 2020. The estimation model uses a multiple linear regression model with independent variables such as gross regional domestic product, access sanitation, total population, and human development index. The fixed variable is the incidence of waste generation rate. During the pandemic Covid-19, the generation and composition of waste in the Riau Islands Archipelago did not experience significant changes, so the waste generation and composition characteristics are the same. However, the variable human development index (0.053) and the population (0.012) significantly increase the waste generation rate. The gross regional domestic product (0.017) negatively correlates, reducing the waste generation rate. The Riau Islands, which has an ocean area of 96%, is a source of life and significant to manage because the waste can be released into the ocean. Therefore, management from sources through policies considering the gross regional domestic product, total population, and human development index needs to be considered to reduce waste generation in the archipelago.
EN
The purpose of this research was to process a mixture of paper waste and garden waste based on material flow analysis and to analyze its parameters based on water content, ash content, heating value, along with Thermogravimetry Analysis (TGA)/Derivative Thermogravimetry (DTG). The garden waste treatment process consists of shredding, drying with a rotary dryer, separator, and then shaving with a hammer mill. Paper waste only needs a shredder process. Then, the mixing process and pelletizing of paper waste as well as garden waste are carried out according to the variation (w/w) 100% paper (K100), 75% paper (K75), 50% paper (K50), 25% paper (K25), and 100% garden waste (K0). The water content ranged from 5.8 to 15.25%. From K0 to K100 samples, the ash content increased from 4.54 to 9.85%. A correlation of 0.9047 was found from samples K0 to K100. There was a correlation between increasing calorific value along with the mixture with paper waste. The caloric value in K0 to K100 increased from 13.11 to 19.03 MJ/kg. The TGA/DTG analysis reduced mass due to water evaporation, devolatilization, and carbonization processes.
EN
The Sludge Treatment Plant (STP) in Surabaya produces solid waste in the form of sludge. The STP in Surabaya provides for Solid Separation Chamber (SSC), equalization unit, Oxidation Ditch (OD), final clarifier, distribution unit, polishing pond, sludge Drying Area (DA), Sludge Drying Bed (SDB), and reservoirs. Sludge waste generation is usually collected in DA and SDB units. This sludge is usually reprocessed for the recycling process, one of which is the waste to energy conversion with a thermochemical process. The difference between these two units is that DA is the sludge from preliminary treatment, while SDB is the sludge from secondary treatment, usually producing microbial biomass. This study aimed to evaluate the sludge produced by the two processing units as solid fuel. The water content of the DA sample is lower because the DA unit has mechanical processing, which separates solids from water. The results of the proximate test resulted in a significant difference between the SDB and DA units. The caloric value, water, ash, and fixed carbon values are significant (<0.05), while the volatile values differ for DA and SBD units. This shows that different treatment is needed for each unit to be appropriately processed as fuel.
EN
Urea fertilizers in agricultural operations usually tend to produce large amounts of ammonia due to hydrolysis, therefore contribute to the air pollution. The purpose of this study was to study the potential black liquor from pulp industry as urease inhibitor. Characterization of the black liquor was carried out by Spectrophotometer Fourier Transform Infra-Red (FTIR) and Thermal Gravimetric Analyzer (TGA) instruments. Meanwhile, the determination of ammonia levels was carried out using UV-spectrophotometer. The black liquor used in this process contains OH stretching, C=O stretching, an aromatic ring vibration, ring vibration, and guaiacil ring vibration indicating the presence of lignin. TGA primary weight loss in black liquor occurs above 200 °C. The addition of urease enzymes to urea tends to increase the release of ammonia. Meanwhile, the results showed that black liquor could prevent the nitrogen loss of urea.
EN
Density and hardness are physical parameters in the manufacturing of refuse derived fuel (RDF) pellets. In making pellets, a high heating value for the combustion system is desired. This research aimed to analyze the mixture of municipal solid waste to its density and hardness and study its correlation to heating value. The variable used in this research is a mixture of paper waste and garden waste and food scraps and garden waste. The density and hardness for the mix of paper waste and garden waste were 1970.6 to 2474.8 kg/m3 and 37.8–42.8 HA, respectively. The mixture of food waste and garden waste has density and hardness of 1822 to 2276.7 kg/m3 and 17.4–37.8 HA. The correlation between density and hardness on heating values did not reach a significance of 0.05, so there was no strong relationship between density and hardness on heating values.
EN
The very high need for personal protective equipment (PPE) impacts the waste generated after using these tools. Therefore, to deal with mask waste during the COVID-19 pandemic, this study was carried out on the processing of mask waste using a thermal process and studied how the potential of this process was for the effectiveness of mask waste processing during the pandemic. This research was conducted on Honeymoon Beach by collecting data on mask waste generated during the pandemic, then measuring the waste proximate, ultimate, and calorific value and testing the thermal process using TGA and Piro GC-MS measurements. Most waste masks found on Honeymoon Beach are non-reusable masks, 94.74%, while reusable masks are 5.26%. The waste is then subjected to thermal processing and analysis using TGA and Piro GC-MS. Based on the data obtained, the thermal process can reduce the mass of non-reusable and reusable mask samples by 99.236% and 88.401%, respectively. The results of the Piro GC-MS analysis show that the lit mask waste will produce fragments of compounds that can be reused as fuel. The process is simple and easy and produces residues that can be reused to reduce environmental pollution due to waste generation during the COVID-19 pandemic.
EN
The endek industry produces low-biodegradable wastewater, which is very difficult to treat using the biological methods. For this reason, this study was aimed at improving the quality of wastewater for endek textile wastewater using the combination of ozone oxidation process as pretreatment and anoxic-aerobic activated sludge. The ozone reactor volume amounted to 3L and the applied ozone dose equaled 0.05 mg/minute. The BOD/COD of endek wastewater increased to 0.38 after ozone treatment and the application of anoxic-aerobic activated sludge treatment. The anoxic-aerobic experiments were conducted in batch process and consisted of activated sludge. Conventional anoxic-aerobic treatment can reach color and COD removal of 30% and 32%, respectively, without pre-treatment. The ozone pretreatment can increase color and COD removal up to 76.6% and 86.9%, respectively. On the basis of the effluent standards of textile wastewater quality, COD, BOD5, and total ammonia (NH3-N) parameters have met the quality standards.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.