Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigated the influence of three types of metallic microfillers, spherical silver and spherical, and dendritic copper, on the ability of polyamide 12 (PA12) to inhibit microorganism growth on the surfaces of samples produced using laser-based powder bed fusion of polymers (PBF-LB/P). The aim of this study was to initially characterize these materials regarding their potential applicability for parts dedicated to use in the hospitals, which surfaces are periodically disinfected using chemical and/or physical measures.
EN
In this paper, polyamide 12 (PA12) blends with three types of metallic fillers are tested, which differ in the type of material and its’ morphology. Low content mixtures are taken into consideration (0.5, 1.0, 2.0, 5.0 wt%), since a low impact on mechanical properties along with obtaining antibacterial properties are desired. The investigation focuses on filler distribution as well as the influence on microstructural homogeneity of the base material after processing with polymer Laser Sintering. Moreover, the influence of the filler content on the mechanical properties and fracture behaviour were examined. Processability PA12 with bioactive metal fillers was confirmed, and no significant changes in ductile behaviour of PA12 were observed. An in-depth analysis of the effect of the filler on microstructural homogeneity was conducted.
EN
The paper presents a detailed description of the method of carrying out static tensile tests in ex-situ X-ray computed tomography (XCT) conditions. The study compares samples manufactured with the use of additive technology in two orientations, horizontally and vertically, which correspond to the in-layer and between-layer sintering mechanisms. Both the fracture mechanism and porosity behavior differed significantly for the two manufacturing directions. The conducted analysis made it possible to compare the changes in porosity, the number of pores, and also their diameters and shape before and after the tensile test. This allows for in-depth identification and better understanding of the phenomena occurring during the static tensile test of polyamide-12 samples manufactured using selective laser sintering (SLS) technology.
EN
Magnesium alloys are well known for their biocompatibility and biodegradable properties [9], [27] owing to the fact that magnesium is a mineral crucial for human body, especially for bone tissue. There are studies [17] on using WE43 additively manufactured magnesium scaffolds for full bone and soft tissue regeneration. Moreover, magnesium implants in bones were investigated as having higher bone-implant interface strength than titanium ones [3]. In this paper, the results of the studies on MAP21 magnesium powder selective laser melting process optimization as a starting point for further bioapplications are presented. MAP21 magnesium alloy owing to its high mechanical properties, excellent vibration damping characteristic and good creep resistance is a promising material to be tested for scaffold structures. The study for the first time shows successful SLM manufacturing of dense samples made of MAP21 alloy. Using an algorithm based on design of experiment (DoE) method [21], the SLM process parameters were designated. The porosity was investigated as a SLM process optimization parameter. High density of produced sample, up to 99%, was achieved. Microstructure and oxidation level after selective laser melting (SLM) manufacturing were characterized. Fine grain microstructure and three kinds of precipitations were found Nd (Gd, Zr, Mg), Mg (Nd, Gd, Zr) and Mg (Zr, Nd, Gd, Zn)). In order to determine the mechanical properties of MAP21 alloy processed with SLM technology, static tensile tests and microhardness tests were conducted, resulting in mechanical properties (Rm = 167 MPa, E = 38.6 GPa, 63–74 HB) comparable with as-cast alloy. A discussion was held on further research opportunities for biomedical use of SLM-ed MAP21 alloy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.