Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Structural optimization coupled with materials selection for stiffness improvement
EN
An application of a Finite Element Model updating is presented in this paper. Two Finite Element models were considered: a reinforced plate and a thin-walled beam. The two parts were numerically calculated in ANSYS Mechanical APDL and MATLAB programs. ANSYS performs Finite Element calculations, and a MATLAB programming code was used to control the optimization procedure. Geometric variables were chosen, to evaluate the value of the defined objective function. The material was picked using available selection charts, to find the most adequate one for the study. It has been concluded that the transveral displacement of the models modified by the optimization process decreased sharply in relation to the original state.
2
Content available remote Experimental validation of a novel thin-walled beam prototype
EN
In this paper, an experimental validation of a novel beam prototype is performed. Tensile tests, both until rupture and on the elastic domain were done in order to determine the material properties. They were used then in Finite Element Analysis model built in ANSYS Mechanical APDL. Three experimental tests were done to the prototype, and, in order to minimize errors, the average value of the three tests determined, and compared with results obtained from the numerical model. It was shown that it was possible to manufacture the beam by the presented manufacturing methodology. An acceptable correlation between the numerical an experimental results was found.
EN
In this work, novel types of internally reinforced hollow-box beams were structurally optimized using a Finite Element Updating code built in MATLAB. In total, 24 different beams were optimized under uncoupled bending and torsion loads. A new objective function was defined in order to consider the balance between mass and deflection on relevant nodal points. New formulae were developed in order to assess the efficiency of the code and of the structures. The efficiency of the code is determined by comparing the Finite Element results of the optimized solutions using ANSYS with the initial solutions. It was concluded that the optimization algorithm, built in Sequential Quadratic Programming (SQP) allowed to improve the effective mechanical behavior under bending in 8500%, showing a much better behavior than under torsion loadings. Therefore, the developed algorithm is effective in optimizing the novel FEM models under the studied conditions.
EN
In this work, novel types of internally reinforced hollow-box beams were structurally optimized using a Finite Element Updating code built in MATLAB. In total, 24 different beams were optimized under uncoupled bending and torsion loads. A new objective function was defined in order to consider the balance between mass and deflection on relevant nodal points. New formulae were developed in order to assess the efficiency of the code and of the structures. The efficiency of the code is determined by comparing the Finite Element results of the optimized solutions using ANSYS with the initial solutions. It was concluded that the optimization algorithm, built in Sequential Quadratic Programming (SQP) allowed to improve the effective mechanical behavior under bending in 8500%, showing a much better behavior than under torsion loadings. Therefore, the developed algorithm is effective in optimizing the novel FEM models under the studied conditions.
EN
Novel types of internally reinforced thin-walled beams are subjected to a feasibility analysis in terms of their effective mechanical behaviour. The novel beams are subjected to bending and torsion uncoupled loadings and are analysed in terms of their stiffness behaviour in static analysis. The models were built using the commercial Finite Element Method (FEM) software ANSYS Mechanical APDL. The feasibility of the models was determined by the comparison of the stiffness behaviour of the novel beams with simple hollow-box beams, having the same mass and dimensions, with the exception of the thickness. An efficiency parameter is used in order to determine the feasibility of the studied geometries. It is found that the novel geometries represent a great improvement under bending loading, better than under torsion loading. Nevertheless, for bending and torsion combined loadings, if bending loads are predominant, the beams can still be interesting for some applications, in particular those with mobile parts.
EN
Sandwich geometries, mainly panels and beams, are widely used in several transportation industries, namely aerospace, aeronautic and automotive. Sandwich geometries are known for their advantages in structural applications: high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. This study aims to know the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behaviour of sandwich beams subjected to bending and torsion uncoupled loadings. In this study, four geometries are compared: simple web-core beam, corrugated core, honeycomb core, and joined honeycomb core. The last three are asymmetric, due to the use of odd number of ribs. The influence of the geometry on the results is discussed by means of a parameter that establishes a relation between the stiffness behaviour and the mass of the object. It is shown that all relations are non-linear, despite the elastic nature of the analysis in both the FEM software and in the practical application.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.