The method of wood waste utilization by pressing it into fuel briquettes is considered. It is proposed to use sulfate soap, a multi-tonnage waste of the pulp and paper industry, as an astringent. It is proven that as a result of adding a binder to the raw material, it is possible to carry out the process of forming briquettes with lower pressures, while ensuring the necessary statistical strength of the briquette. An appropriate method of supplying the binder is its preliminary mixing with wood waste. The most suitable concentration of the binder for fuel briquettes amounts to 6%. The use of a binder made it possible to reduce engine power by 40%, as well as increase the density of the obtained fuel briquettes by 10%.
Accumulation of leachate at municipal solid waste (MSW) landfills is a significant environmental problem. The analysis of known technologies of leachate treatment was performed. It was established that it is not effective to use the same technology to treat leachate in two different periods: before the landfill closure and reclamation process as well as afterwards. The application of integrated two-stage aerobic-reagent pre-treatment technology with subsequent full treatment at municipal wastewater treatment plants was proposed for these purposes. The results of laboratory studies of optimal parameters of technology realization for the pre-treatment of Lviv MSW landfill leachate were presented. Recommendations for the practical implementation of the combined two-stage aerobicreagent technology for the landfill leachate pre-treatment were developed.
The process of sorption of chromium(III) ions with a stationary sorbent layer of bentonite clays was investigated. The main advantages of using bentonites in water purification technologies are described: powerful geological reserves, cheap process of rock extraction, easy preparation for transportation and use, possibility of using waste sorbents in other technologies that is why there is no need in costly regeneration. The influence of various factors (process duration, an adsorbent layer) on the degree of wastewater purification from chromium ions, the effect of pumping speed on the dynamic capacity of the sorbent was studied and the effective volume was determined. The adsorption efficacy increases with the increase of the adsorbent layer, what can be explained by the development of the active sorption surface. As the initial concentration of chromium ions increases, the time of appearance of the first traces of the contaminant at the exit of the column increases, as well as the total time to channeling. The results of the studies indicate a higher adsorption capacity of modified bentonite with respect to Cr3+ ions compared to its natural formula. The cleaning efficacy of the solution with a concentration of chromium ions of 0.5 g∙dm–3 is increased by 5% when using 15 g of modified bentonite and 6,5% in the case one uses 20 g compared to the natural form.
This work is dedicated to the development of scientific technologies of wastewater purification of different industrial enterprises from chrome ions through adsorption with the help of bentonite from Cherkasy field under dynamic conditions. The prospects and efficacy of bentonite clays application for wastewater purification are confirmed by their advantages over other sorbents, that is: they win in accessibility, cost, and possibility of regeneration and multiple applications. The level of wastewater purification during adsorption with a stationary sorbent layer under static conditions and under conditions of perfect mixing at different concentrations of chromium ions (III) and quantities of the dosed sorbent was determined. The significant difference in the purification level ranges from 70–87% and is more dependent on the stock concentration of chromium ions. It was found that the purification time of the same volumes of solutions for low concentrations is almost twice shorter under constant stirring, and of the same level at the stock concentrations of 1500 mg/dm3. The technological schemes of wastewater purification from the heavy metal ions contamination were developed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.