Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A study was conducted on selected nanoclay fillers, i.e. montmorillonite (MMT) or halloysite (HNT) in polylactic acid (PLA) pellets for the manufacture of filaments for 3D printing. A 1-3 weight fraction of the filler was used. In order to compatibilize the nanofiller with the PLA, two methods were employed to facilitate dispersion of the nanoclay particles: using prewetting of the nanoclay in dichloromethane (DCM) and introducing a short-chain plasticizer (polyethylene glycol, PEG200) during the homogenization process. The effectiveness of filler dispersion was verified by performing thermal analysis, i.e. thermogravimetry and differential scanning calorimetry (DG/DSC), as well as by microscopic observations. The processability of the obtained nanocomposite filament was verified for the finished products manufactured from both of the materials by FDM printing. Mechanical strength and impact tests were conducted on the printed samples. The results showed that the prints made from the nanocomposite filaments have better tensile strength (by 25 and 10% for PLA/HNT and PLA/MMT, respectively) compared to prints made from the pure polymer filament.
EN
The aim of this work was to obtain polymer fibers by the emulsion electrospinning. For this purpose, polycaprolactone (PCL) was used, which was modified before the electrospinning stage with micelles obtained by the oil-in-water (O/W) emulsion method. Micelles were obtained by combining the non-ionic surfactant Tween 80 or Triton X-100 used at different concentrations with the amino acid alanine. The obtained fibrous substrates had a typical unimodal fiber size distribution and their average size was in the range of 590-800 nm. The effectiveness of the emulsion electrospinning process was confirmed by Fourier Transform Infrared Spectroscopy - Attenuated Total Reflectance (FTIR-ATR) showing the presence of surfactants. The addition of micelles to the polymer solution significantly reduces the contact angle of nonwoven fabrics: from 120° (for PCL) to ~20-30° for surfactant-loaded nonwovens, and the micellar form allows tracking the release of alanine into the solution (UV-Vis). The combination of the core-shell- -morphology of the emulsion electrospun fibers allows comparable amino acid release times. There were no significant differences in both the amount of alanine released and the rate of its release between PCL/ Tween80/alanine and PCL/Triton X-100/alanine fibers, which were characterized by a similar fiber size.
EN
Purpose: The aim of this study was to investigate the possibility of intercalation of gentamicin and neomycin in montmorillonite (MMT) nanofillers, as well as to study the in vitro antimicrobial properties of nanocomposite films containing a small amount of thus obtained nanofillers. Methods: The polylactide matrix (PLA) nanocomposite films with drug-intercalated montmorillonite fillers were obtained by casting after intercalation of drugs in aqueous solutions. The efficiency of intercalation has been confirmed by X-ray diffraction (XRD) and Zeta potential measurements. The materials were studied for surface wettability, roughness and mechanical properties during 6 weeks of incubation in phosphate buffer saline, and their bactericidal activity was tested against Escherichia coli bacteria before and after 6 weeks of incubation in distilled water at 37 C. The presence of antibiotics during the incubation was monitored by conductivity and pH measurements. Results: The results indicate that nanocomposite polylactide films with montmorillonite filler intercalated with gentamicin and neomycin tend to degrade faster that their counterparts with non-intercalated fillers, which affects their mechanical properties. However, drug intercalation provided an antibacterial activity, which was confirmed by the presence of zones inhibiting the growth of Gram-negative bacteria for both antibiotics. It was also confirmed that the interaction of antibiotics with clay and polymer matrix did not adversely affect this bactericidal effect. Conclusions: Montmorillonite can be successfully intercalated with both gentamicin and neomycin, and then used as active filler for polylactide films having very good antibacterial properties, therefore their use in biomedical applications can be significantly expanded.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.