Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Ultraviolet to visible light conversion - characterization of down-shifting layers
EN
Obtaining electricity from renewable energy sources is the main goal of the global energy industry. The leading role in this field of energy is photovoltaic that uses solar energy with no emissions of any pollutants However, the ratio of production costs to solar cell efficiencies is high. This problem concerns cells that use one P-N junction in their structure, all photovoltaic panels available on the market. It is possible to exceed this limit by creating additional semiconductor junctions in the cell structure or by using ultraviolet or infrared light. There is a way to increase efficiency by using ultraviolet light by shifting a certain range of UV radiation into the visible range. The work presented in this article is based on the production and characterization of layers converting UV radiation into visible light. These layers consist of several elements: a base, a converting pigment and a solvent. In the presented work three different methods were used for the deposition of converting layers: • spray-coating, spin-coating, • screenprinting. For each deposition method the solution has been prepared in a slightly different way. Increasing the efficiency of photovoltaic cells with a small financial outlay is a remarkable breakthrough in the field of photovoltaics. The analysis of the transmittance results of the layers also confirms the possibility of using these pigments to improve the efficiency of photovoltaic cells.
PL
Pozyskiwanie energii elektrycznej z odnawialnych źródeł energii jest głównym celem światowej energetyki. Wiodącą rolę w tej dziedzinie energii odgrywa fotowoltaika, która wykorzystuje energię słoneczną bez emisji jakichkolwiek zanieczyszczeń. Jednak stosunek kosztów produkcji do wydajności ogniw słonecznych jest wysoki. Problem ten dotyczy ogniw, które w swojej strukturze wykorzystują jedno złącze P-N, czyli większość dostępnych na rynku paneli fotowoltaicznych. Możliwe jest przekroczenie tego limitu poprzez utworzenie dodatkowych połączeń półprzewodnikowych w strukturze komórki lub za pomocą światła ultrafioletowego lub podczerwonego. Istnieje sposób na zwiększenie wydajności poprzez wykorzystanie światła ultrafioletowego poprzez przesunięcie pewnego zakresu promieniowania UV do zakresu widzialnego. Przedstawione w artykule prace polegają na wytworzeniu i scharakteryzowaniu warstw przetwarzających promieniowanie UV na światło widzialne. Warstwy te składają się z kilku elementów: bazy, pigmentu konwertującego i rozpuszczalnika. W przedstawionej pracy zastosowano trzy różne metody osadzania warstw: • osadzanie natryskowe, • powlekanie wirowe, • sitodruk. Dla każdej metody osadzania roztwór został przygotowany w nieco inny sposób. Zwiększenie wydajności ogniw fotowoltaicznych przy niewielkich nakładach finansowych to niezwykły przełom w dziedzinie fotowoltaiki. Analiza wyników transmitancji warstw potwierdza również możliwość wykorzystania tych pigmentów do poprawy wydajności ogniw fotowoltaicznych.
EN
Among the large family of metallic oxides, there is a considerable group possessing excellent semiconducting properties. What follows, they are promising materials for applications in the field of optoelectronics and photonics. Thanks to the development of nanotechnology in the last few decades, it is now possible to manufacture a great variety of different nanostructures. By controlling their size, shape, composition and crystallinity, one can influence such properties as band gap, absorption properties, surface to volume ratio, conductivity, and, as a consequence, tune the material for the chosen application. The following article reviews the research conducted in the field of application of the metallic oxide nanoparticles, especially ZnO, TiO2 and ITO (Indium-Tin Oxide), in such branches of optoelectronics as solid-state lightning, photodetectors, solar-cells and transparent conducting layers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.