Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB) method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm-3, 9.94 × 1019 cm-3 and 1.99 × 1020 cm-3) and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot). It was shown that Cl dopant suppressed the unwanted secondary (5 1 1) crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm-3was above 1010cm.
EN
TlBr single crystals grown using the vertical Bridgman-Stockbarger method were characterized for semiconductor based radiation detector applications. It has been shown that the vertical Bridgman-Stockbarger method is effective to grow high-quality single crystalline ingots of TlBr. The TlBr single crystalline sample, which was located 6 cm from the tip of the ingot, exhibited lower impurity concentration, higher crystalline quality, high enough bandgap (>2.7 eV), and higher resistivity (2.5 × 1011 Ω·cm) which enables using the fabricated samples from the middle part of the TlBr ingot for fabricating high performance semiconductor radiation detectors.
EN
Although many studies have focused on the unique plastic deformation behavior of nanocrystalline aluminum (e.g., the positive deviation from Hall-Petch relation, the unusual yield-drop phenomenon in tensile mode, etc.), the data reported by different research groups are inconsistent with each other, possibly because of different fabrication processes. In this study, aluminum samples with a wide grain-size spectrum – from a few micrometers down to 100 nanometers – are manufactured by powder metallurgy. The grain size was measured by X-ray diffraction analysis and transmission electron microscope observation. Furthermore, the tensile behavior, which varied according to a grain size, is discussed with a comparison of the theoretical models.
EN
This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail of carbothermic reaction, thermodynamic calculation was carried out and compared with experiments. From thermodynamic calculation and experiment, it was confirmed that Sn-based anodic slime could be reduced by controlling temperature and amount of carbon. However, any tendency between the reduction temperature and carbon content for the reduction reaction was not observed.
EN
The effects of sintering condition and powder size on the microstructure of MIMed parts were investigated using water-atomized 316L stainless steel powder. The 316L stainless steel feedstock was injected into micro mold with micro features of various shapes and dimensions. The green parts were debound and pre-sintered at 800°C in hydrogen atmosphere and then sintered at 1300°C and 1350°C in argon atmosphere of 5torr and 760torr, respectively. The oxide particles were formed and distributed homogeneously inside the sample except for the outermost region regardless of sintering condition and powder size. The width of layer without oxide particles are increased with decrease of sintering atmosphere pressure and powder size. The fine oxides act as the obstacle on grain growth and the high sintering temperature causes severe grain growth in micro features due to larger amount of heat gain than that in macro ones.
EN
Tungsten carbide-cobalt hard metal scrap was recycled to obtain high purity spherical tungsten powder by a combined hydrometallurgy and physical metallurgy pathway. Selective leaching of tungsten element from hard metal scrap occurs at solid / liquid interface and therefore enlargement of effective surface area is advantageous. Linear oxidation behavior of Tungsten carbide-cobalt and the oxidized scrap is friable to be pulverized by milling process. In this regard, isothermally oxidized Tungsten carbide-cobalt hard metal scrap was mechanically broken into particles and then tungsten trioxide particle was recovered by hydrometallurgical method. Recovered tungsten trioxide was reduced to tungsten particle in a hydrogen environment. After that, tungsten particle was melted and solidified to make a spherical one by RF (Ratio Frequency) thermal plasma process. Well spherical tungsten micro-particle was successfully obtained from spent scrap. In addition to the morphological change, thermal plasma process showed an advantage for the purification of feedstock particle.
EN
316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.