Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Low-altitude photogrammetric studies are often applied in detection of aviation obstacles. The low altitude of the Unmanned Aerial Vehicle (UAV) flight guarantees high spatial resolution (X, Y) of the obtained data. At the same time, due to high temporal resolution, UAVs have become an appropriate tool for gathering data about such obstacles. In order to ensure the required accuracy of orientation of the photogrammetric block, Ground Control Points (GCPs) are measured. The recently introduced UAV positioning solutions that are based on Post-Processing Kinematic (PPK) and Real Time Kinematic (RTK) are known to effectively reduce, or, according to other sources, even completely eliminate the necessity to conduct GCP measurements. However, the RTK method involves multiple limitations that result from the need to ensure continuous communication between the reference station and the rover receiver. The main challenge lies in achieving accurate orientation of the block without the need to conduct time-consuming ground measurements that are connected to signalling and measuring the GCPs. Such solution is required if the SPP code method is applied to designation the position of the UAV. The paper presents a research experiment aimed at improving the accuracy of the determination of the coordinates of UAV for the SPP method, in real time. The algorithm of the SPP method was improved with the use of IGS products.
EN
The article presents the results of research on the development of a method for improving the positioning accuracy of an UAV equipped with a single-frequency GPS receiver for determining the linear elements of exterior orientation in aerial photogrammetry. Thus, the paper presents a computational strategy for improving UAV position determination using the SPP code method and the products of the IGS service. The developed algorithms were tested in two independent research experiments performed with the UAV platform on which an AsteRx-m2 UAS single-frequency receiver was installed. As a result of the experiments, it was shown that the use of IGS products in the SPP code method made it possible to improve the accuracy of the linear elements to the level of about ±2.088 m for X coordinate, ±1.547 m for Y coordinate, ±3.712 m for Z coordinate. The paper also shows the trend of changes in the obtained accuracy in determining linear elements of exterior orientation in the form of a linear regression function. Finally, the paper also applies the SBAS corrections model for the improvement of UAV position calculation and determination of linear elements of exterior orientation. In this case, the improvement in the accuracy of determining the linear elements of exterior orientation is about ±1.843 m for X coordinate, ±1.658 m for Y coordinate, ±7.930 m for Z coordinate. As the obtained test results show, the use of IGS products and SBAS corrections in the SPP code method makes it possible to improve the determination of UAV positions for the use in aerial photogrammetry.
EN
This study presents a modified algorithm to determine the accuracy of GPS positioning in aerial navigation. To achieve this, a mixed model with measurement weights was used to determine the resultant value of accuracy of aerial vehicle positioning. The measurement weights were calculated as a function of the number of GPS tracking satellites. The calculations were performed on actual GPS measurement data recorded by two onboard GNSS receivers installed onboard a Cessna 172 aircraft. The flight test was conducted around the military airport in Dęblin. The conducted analyses demonstrated that the developed algorithm improved the accuracy of GPS positioning from 62 to 91% for horizontal coordinates and between 16-83% for the vertical component of the aerial vehicle position in the BLh ellipsoidal frame. The obtained test results show that the developed method improves the accuracy of aircraft position and could be applied in aerial navigation.
4
Content available remote Zastosowanie metody pozycjonowania SBAS/EGNOS do wyznaczenia współrzędnych BSP
PL
W artykule dokonano przedstawienia wyników badań dotyczących wyznaczenia pozycji BSP (Bezzałogowy Statek Powietrzny) z użyciem metody pozycjonowania SBAS (Satellite Based Augmentation System) dla systemu wspomagania EGNOS (European Geostationary Navigation Overlay Service). W eksperymencie wykorzystano jednoczęstotliwościowy odbiornik AsteRx-m2 UAS, który rejestrował obserwacje satelitarne GPS (Global Positioning System) oraz poprawki EGNOS. Lot testowy wykonano w 2020 r. w okolicach Warszawy. Obliczenia nawigacyjne dla określenia pozycji BSP podczas lotu wykonano w oprogramowaniu gLAB v.5.5.1. Na podstawie wykonanych obliczeń wyznaczono: współrzędne BSP w układzie elipsoidalnym BLh, błędy średnie współrzędnych BSP, wartości współczynników geometrycznych DOP (Dilution of Precision). Ponadto w trakcie wykonanych obliczeń stwierdzono, że wartości błędów średnich wyznaczonych współrzędnych BSP nie przekraczają 3.6 m, zaś maksymalna wartość współczynnika geometrycznego GDOP (Geometric DOP) jest mniejsza niż 3.5.
EN
The article presents the results of research on the determination of the UAV (Unmanned Aerial Vehicle) position using the SBAS (Satellite Based Augmentation System) positioning method for the EGNOS (European Geostationary Navigation Overlay Service) support system. The experiment used a single-frequency AsteRx-m2 UAS receiver, which recorded GPS (Global Positioning System) satellite observations and EGNOS corrections. The test flight was made in 2020 near Warsaw. Navigation calculations for determining the UAV position during the flight were made in the gLAB v.5.5.1 software. On the basis of the performed calculations, the following were determined: BSP coordinates in the ellipsoidal system BLh, mean errors of the BSP coordinates, values of the geometric coefficients DOP (Dilution of Precision). Moreover, during the performed calculations, it was found that the mean errors of the determined UAV coordinates do not exceed 3.6 m, and the maximum value of the Geometric DOP coefficient is lower than 3.5.
EN
The article presents a modified scheme of determining the accuracy parameter of SBAS (Satellite Based Augmentation System) positioning with use of two supporting systems: EGNOS (European Geostationary Navigation Overlay Service) and SDCM (System of Differential Correction and Monitoring). The proposed scheme is based on the weighted mean model, which combines single solutions of EGNOS and SDCM positions in order to calculate the accuracy of positioning of the aerial vehicle. The applied algorithm has been tested in a flight experiment conducted in 2020 in north-eastern Poland. The phase of approach to landing of a Diamond DA 20-C1 aircraft at the EPOD airport (European Poland Olsztyn Dajtki) was subjected to numerical analysis. The Septentrio AsterRx2i geodesic receiver was installed on board of the aircraft to collect and record GPS (Global Positioning System) observations to calculate the navigation position of the aircraft. In addition, the EGNOS and SDCM corrections in the “*.ems” format were downloaded from the real time server data. The computations were realized in RTKPOST library of the RTKLIB v.2.4.3 software and also in SciLab application. Based on the conducted research, it was found that the accuracy of aircraft positioning from the EGNOS+SDCM solution ranged from -1.63 m to +3.35 m for the ellipsoidal coordinates BLh. Additionally, the accuracy of determination of the ellipsoidal height h was 1÷28% higher in the weighted mean model than in the arithmetic mean model. On the other hand, the accuracy of determination of the ellipsoidal height h was 1÷28% higher in the weighted mean model than for the single EGNOS solution. Additionally, the weighted mean model reduced the resultant error of the position RMS-3D by 1÷13% in comparison to the arithmetic mean model. The mathematical model used in this study proved to be effective in the analysis of the accuracy of SBAS positioning in aerial navigation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.