Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this study was to compare muscle strength at 90° hip and knee flexion as measured in three different positions and to investigate whether an internal or external deficit in the range of rotation in the hip joint affects flexor muscle strength. Methods: We measured the peak muscle torque of rotation in the hip joint, using isometric torquemeter, and hip ROM in healthy participants N = 40, aged 21.6 ± 1.9, in three different measurement positions. We tested for differences between the positions, and for the potential influence of participant’s sex and ROM asymmetry. Results: The measured peak muscle torque was affected not only by sex and the value of hip flexion affect, but also by the position in which it is measured. Subjects with restricted external rotation of the hip joint (CERD) had significantly higher flexor peak muscle torque compared to subjects with restricted internal rotation (CIRD), in all but the supine position. For CERD, the results were: Supine (SuP) 1.02 ± 0.26; Sitting (StP) 1.32 ± 0.58; Standing (SP) 1.53 ± 0.47; and for CIRD, the results were: Supine (SuP) 1.05 ± 0.17; Sitting (StP) 1.05 ± 0.40; Standing (SP) 1.47 ± 0.53. Conclusions: Overall, measurement position and passive ROM significantly influence the peak muscle torque in isometric conditions. Moreover, an imbalance in thigh rotation movement significantly determines the magnitude of muscle torque of the hip flexion movement. Individuals with increased internal-toexternal rotation achieved significantly higher values for flexor muscle torque force moments. Overall, these findings are of importance for interpreting or comparing any reported values for muscle torque force moments.
EN
Purpose: The aim of this study was to examine the effect of obesity and age on body balance disorders in women over 60, especially whether obesity increases the FR in older females and whether age and obesity affect the same stabilographic parameters when it comes to the FR. Methods: The study consisted of 56 inactive females aged 71.77 ± 7.43 (SD). They were divided into groups according to age and obesity. Results: Obesity separately affects FRI12-6, static indicators with eyes closed (OSI EC, APSI EC, MLSI EC), and age affects FRI12-6 and static indices with eyes open (OSI EO, APSI EO). After considering design factors (age and obesity), there were statistically significant differences in OSI EO ( p = 0.027), APSI EO (p = 0.034), FRI12-6 ( p = 0.0002) between obese and non-obese participants in the age groups. There were no statistical differences between non-obese old and obese-young participants ( p = 0.863). The interaction between obesity and age in the FR in static indices and in FRI12-6 ( p = 0.73047) was not significant. Conclusions: Age and obesity affect the stabilographic parameters individually, but there is no interaction effect between them. The presence of only one of the above risk factors may increase the FR. Obesity affects stability, while age depends on other factors. If older people are not obese or fit, involutional changes could be reversed. The type of obesity and the location of the fat tissue should be taken into account in FR assessment.
EN
Purpose: The aim of the experiment presented in this study was to determine the pressure distribution within the forefoot depending on the type of orthopaedic footwear used. Methods: The study included 27 women aged 20 to 25. The Zebris FDM-2 dynamographic platform was used in foot pressure measurements. The load distribution was measured in three types of orthopaedic footwear: MedSurg, MedSurgPro and OrthoWedge. The full gait cycle was recorded. The Cavanagh masks were applied to the load distribution results processed into a graphic form. The data were analysed using Statistica v.13.1. Results: In the forefoot area, i.e. the metatarsal bones and toes 1–5, the lowest loads were reported in the shoes that off-load the forefoot (0.2 N/cm2, p < 0.001). In the area of the first to fifth metatarsal bones and the hallux, the highest load was observed in the rocker shoe, accounting for 19.7 N/cm2 (p < 0.001). For comparison, high pressure in the flat shoe was found in the area of toes 2 to 5 (p < 0.001). Conclusions: In the area of the metatarsal and toe bones, the pressure exerted was highest in the commonly used rocker shoe. The flat shoe provides an even and uniform load in all areas of the forefoot, while this type of shoe does not significantly reduce the pressure forces on the forefoot. The shoe that was the most effective in off-loading was the forefoot off-loading shoe (OrthoWedge). Barefoot walking puts less load on the forefoot compared to the flat and rocker shoes used after orthopaedic procedures.
EN
The aim of this study was to compare the activity of upper limb muscles during hand rim wheelchair propulsion and lever wheelchair propulsion at two different velocity levels. Methods: Twenty male volunteers with physical impairments participated in this study. Their task was to push a lever wheelchair and a hand rim wheelchair on a mechanical wheelchair treadmill for 4 minutes at a speed of 3.5 km/h and 4.5 km/h in a flat race setting (conditions of moving over flat terrain). During these trials, activity of eight muscles of upper limbs were examined using surface electromyography. Results: The range of motion in the elbow joint was significantly higher in lever wheelchair propulsion (59.8 ± 2.43°) than in hand rim wheelchair propulsion (43.9 ± 0.26°). Such values of kinematics resulted in a different activity of muscles. All the muscles were more active during lever wheelchair propulsion at both velocity levels. The only exceptions were extensor and flexor carpi muscles which were more active during hand rim wheelchair propulsion due to the specificity of a grip. In turn, the examined change in the velocity (by 1 km/h) while moving over flat terrain also caused a different EMG timing of muscle activation depending on the type of propulsion. Conclusions: Lever wheelchair propulsion seems to be a good alternative to hand rim wheelchair propulsion owing to a different movement technique and a different EMG timing of muscle activity. Therefore, we believe that lever wheelchair propulsion should serve as supplement to traditional propulsion.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.