Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: Rubber is widely used in tires, mechanical parts, and user goods where elasticity is necessary. Some essential features persist unsolved, primarily if they function in excessive mechanical properties. It is required to study elastomeric Rubber's performance, which is operational in high-level dynamic pressure and high tensile strength. These elastomeric aims to increase stress breaking and preserve highly pressurised tensile strength. Design/methodology/approach: The effects of carbon black polymer matrix on the tensile feature of different Rubber have been numerically investigated in this research. Rubber's material characteristics properties were measured using three different percentages (80%, 90%and 100%) of carbon black filler parts per Hundreds Rubber (pphr). Findings: This study found that the tensile strength and elongation are strengthened as the carbon black filler proportion increases by 30%. Practical implications: This research study experimental tests for Rubber within four hyperelastic models: Ogden's Model, Mooney-Rivlin Model, Neo Hooke Model, Arruda- Boyce Model obtain the parameters for the simulation of the material response using the finite element method (FEM) for comparison purposes. These four models have been extensively used in research within Rubber. The hyperelastic models have been utilised to predict the tensile test curves—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model. Numerical Ogden model results have shown that the relative fitness error was the case with large strains are from 1% to 2.04%. Originality/value: In contrast, other models estimate parameters with fitting errors from 2.3% to 49.45%. The four hyperelastic models were tensile test simulations conducted to verify the efficacy of the tensile test. The results show that experimental data for the uniaxial test hyperelastic behaviour can be regenerated effectively as experiments. Ultimately, it was found that Ogden's Model demonstrates better alignment with the test data than other models.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.