Znaleziono wyników: 2
Liczba wyników na stronie
Wyniki wyszukiwania
material; most often, carbon materials with good electrical conductivity and durability are used. To increase the power output of an MFC, the anode material can be modified to reduce the internal resistance and increase the anode surface area. Therefore, this study determined how modifying a carbon felt anode with reduced graphene oxide (rGO) and a combination of rGO with iron (III) oxide (rGO-Fe) affected electricity generation in an MFC fueled with wastewater. A mixed microbial consortium was used as the anode biocatalyst. The MFC-rGO-Fe produced significantly higher voltages than other cells (average 109.4 ± 75.1 mV in the cycle). Power density curves indicated that modifying the anode with rGO-Fe increased the power of the MFC to 4.5 mW/m2, 9.3- and 3.9-times higher than that of the control MFC and the MFC-rGO, respectively. Anode modification reduced the internal resistance of the cells from 1029 Ω in the control MFC to 370 and 290 Ω in the MFC-rGO and MFC-rGO-Fe, respectively. These results show that a mixture of rGO with iron (III) oxide positively affects electricity production and can be successfully used for anode modification in the MFCs fueled with wastewater.
of basic indicators of water pollution, such as iron, manganese, turbidity, color, and nitrogen compounds, the raw water collected from the groundwater intake and the water treated after the filtration process were characterized. A comparison of the efficiency of water treatment installation before and after modernization indicated that there was a significant improvement in the quality of treated water, especially in terms of manganese removal.
Ograniczanie wyników