Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Present paper is a continuation of works on evaluation of red, green, blue (RGB) to hue, saturation, intensity (HSI) colour space transformation in regard to digital image processing application in optical measurements methods. HSI colour space seems to be the most suitable domain for engineering applications due to its immunity to non-uniform lightning. Previous stages referred to the analysis of various RGB to HSI colour space transformations equivalence and programming platform configuration influence on the algorithms execution. The main purpose of this step is to understand the influence of computer processor architecture on the computing time, since analysis of images requires considerable computer resources. The technical development of computer components is very fast and selection of particular processor architecture can be an advantage for fastening the image analysis and then the measurements results. In this paper the colour space transformation algorithms, their complexity and execution time are discussed. The most common algorithms were compared with the authors own one. Computing time was considered as the main criterion taking into account a technical advancement of two computer processor architectures. It was shown that proposed algorithm was characterized by shorter execution time than in reported previously results.
EN
Presented work considers flow and thermal phenomena occurring during the single minijet impingement on curved surfaces, heated with a constant heat flux, as well as the array of minijets. Numerical analyses, based on the mass, momentum and energy conservation laws, were conducted, regarding single phase and two-phase simulations. Focus was placed on the proper model construction, in which turbulence and boundary layer modeling was crucial. Calculations were done for various inlet parameters. Initial single minijet results served as the basis for the main calculations, which were conducted for two jet arrays, with flat and curved heated surfaces. Such complex geometries came from the cooling systems of electrical devices, and the geometry of cylindrical heat exchanger. The results, regarding Nusselt number, heated surface temperature, turbulence kinetic energy, production of entropy and vorticity, were presented and discussed. For assumed geometrical parameters similar results were obtained.
EN
Main aim of this paper was to analyze the influence of strong magnetic field on the enhancement or suppression of nanofluids transport processes. The second objective was to determine how the flow structure changed under the influence of a magnetic field. Analyzed diamagnetic nanofluids composed of distilled water and the copper nanoparticles of 40–60 nm size in three different concentrations (50, 500, and 1000 ppm). The experimental enclosure position in the magnet test section caused the most intricate interaction of the acting forces: the gravitational and magnetic buoyancy ones, and made the interpretation of results very difficult. The Nusselt number ratio and the thermomagnetic Rayleigh number were determined for heat transfer analysis, while the fast Fourier transform was performed for the nanofluid flow structure analysis. Spectral analysis for all examined nanofluids was presented. Influence of nanoparticles concentration was clearly visible, while the direct impact of magnetic field on the heat transfer and flow structure should be still investigated.
EN
A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.
EN
The main purpose of conducted studies was recognition of low concentration nanofluid under the influence of magnetic field potential applications. The investigations are having fundamental character but Authors keep in mind better energy utilization through the heat transfer enhancement. The examined fluid was composed of water and Cu/CuO nanoparticles. Three temperature differences were imposed on the system. The results did not give unequivocal answer on possible utilization of studied phenomena, but there is open scene for the studies of particle-fluid interaction and flow structure. The main conclusion is that the magnetic properties of base fluid and particles are crucial for such analysis.
6
Content available remote Velocity and temperature maldistribution due to the magnetic field influence
EN
The elements that possess the ability of changing the flow structure (neckings, nozzles, valves, elbows) can be found in numerous industrial and medical applications. This ability leads to the velocity and temperature fields modification and can be a reason of negative effects like pressure loss. These negative effects can be reduced by the usage of magnetic field. Magnetic control of weakly magnetic fluids’ velocity and temperature distributions is well known. Presented paper considers the numerical analysis of velocity and temperature maldistribution due to the influence of strong magnetic field. The analysis was carried out for three-dimensional circular duct with simplified stenosis (narrowing of the blood vessels), which took form of confusor-diffuser section of the pipe. The system included duct and the magnetic coil that was oriented perpendicularly to the flow axis and placed in between confusor and diffuser. The wall of the stenosis was divided into subzones partially heated in order to control the velocity and temperature fields. Biot-Savart’s law was applied to calculate the distribution of the magnetic field, which was then used to obtain the magnetic force distribution and added to principle of conservation of momentum equations as the external body force. Commercially available software Ansys Fluent 13 was chosen to conduct the numerical analysis, however special user-defined modulus to calculate the distribution of magnetic force was prepared and implemented in it. The results pointed out that the usage of magnetic field might provide a significant change in both velocity and temperature distribution, especially for low Reynolds number flows.
PL
Elementy posiadające zdolność zmiany struktury przepływu (przewężenia, dysze, zawory, kolanka) mają wiele zastosowań w przemyśle i medycynie. Zdolność ta prowadzi do modyfikacji pól temperatury oraz prędkości i może być przyczyną negatywnych efektów, takich jak straty ciśnienia. Te negatywne efekty można wyeliminować przy użyciu pola magnetycznego. Magnetyczna kontrola rozkładów prędkości i temperatury słabo namagnesowanych cieczy jest dobrze znana. Niniejszy artykuł prezentuje analizę numeryczną zaburzeń pól prędkości i temperatury pod wpływem silnego pola magnetycznego. Analizę przeprowadzono dla trójwymiarowych kanałów o przekroju okrągłym z uproszczoną stenozą (zwężeniem naczyń krwionośnych) w formie połączenia typu konfuzor-dyfuzor. Badany układ składał się z kanału oraz cewki magnetycznej zorientowanej prostopadle do osi przepływu i umieszczonej między konfuzorem a dyfuzorem. Ścianka stenozy została podzielona na mniejsze obszary grzane różnicowo, aby odpowiednio zmieniać pole temperatury i prędkości. Zastosowano prawo Biota-Savarta w celu obliczenia rozkładu indukcji pola magnetycznego, który później został wykorzystany do otrzymania rozkładu siły magnetycznej. Siła ta została umieszczona w równaniach zachowania pędu. Analizę przeprowadzono przy użyciu komercyjnego oprogramowania (Ansys Fluent 13), w którym zaimplementowano specjalną funkcję definiowaną przez użytkownika w celu obliczenia rozkładu indukcji oraz siły magnetycznej. Wyniki wykazały, że pole magnetyczne może mieć znaczący wpływ na rozkłady prędkości i temperatury, szczególnie w przypadku przepływów o niskiej liczbie Reynoldsa.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.