Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With this optimization, the cargo will increase and the ship's revenue will also be more. The LCU ship that we know so far is a ship whose cargo is always above the main and the space under the main is unused Void Space. The purpose of this study is to determine the optimization value of the use of space under the main deck of the Landing Craft Utility (LCU) ships. method used in this study is a comparison with several previous ship approaches to produce evaluation results from the addition of loading space under the main deck and calculation of stability using computational software approximation. LCU design of under main deck space with a maximum vehicle value can accept a vertical moment of 2750 mm. With a structural strength of 13150 tons. A series of numerical experiments show that the proposed method can effectively produce a satisfactory LCU ship design optimization plan for ship owners.
EN
This paper discusses the mechanical properties of alternative wood substitute materials in the construction of small boats (jukung/cadik type). Jukung/cadik boat as a small fishing boat with a length overall 6,400 m, design beam 1,530 m, design draft 0.380 m, displacement 2,442 tons, wetted surface area 15.58 m2, the pressure acting on the submerged hull needed minimum material used has a strength of 0.0039 MPa or 3.92 kN/m2. The replacement material used is the HDPE blue drum scrap, which has an average thickness of 3mm, then made into two layers as laminate. The laminate process uses welding. The results of HDPE laminate material from these two layers are tested for tensile and compressive strength to meet the material strength requirements for small ship hulls. They were testing the strength of HDPE welded joints with type A1 specimens. Tension and compression of the two-layer laminate material was tested with specimens of type A2, A3, and A4. The tensile test results for A1 specimens obtained for welding tests are pretty good at 17.1 MPa, then the results of compression tests for specimen type A2, A3, and A4 on average are 23.36 MPa, which is greater than the need for the strength of the jukung/cadik hull.
EN
Purpose: This paper describes and discusses the processing and characterization of quartz particulate reinforced aluminium-silicon alloy matrix composite. Design/methodology/approach: In this regard, quartz-silicon dioxide particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate volume fraction. Tensile tests and scanning electron microscopic studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Findings: Hardness values are measured for the quartz particulate reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites decreases with the increase in addition of quartz particulate. Research limitations/implications: The results allows to determine the structure and properties of the aluminium silicon matrix composite materials. Originality /value: In addition, this research article is well featured by the particulate-matrix bonding and interface studies which have been conducted to understand the processed composite materials mechanical behavior and it was well supported by the fractographs taken using the scanning electron microscope (SEM).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.