Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Pilot evaluation of integrating GLONASS, Galileo and BeiDou with GPS in ARAIM
EN
In this pilot study, availability of the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) when integrating various combinations of satellite constellations including; Galileo, GLONASS and BeiDou with GPS is investigated. The Multiple Hypothesis Solution Separation method was applied using one month of real data. The data was collected at stations of known positions, located in regions that have different coverage levels by the tested constellations. While most previous studies used simulated data, the importance of using real data is twofold. It allows for the use of actual User Range Accuracy (URA) received within the satellite navigation message, which is a fundamental component for computation of the integrity protection level; and the computation of vertical position errors to validate the integrity approach. Results show that the vertical position error was always bounded by the protection level during the test period and the ARAIM availability can reach 100% of the time when using all constellations even though some constellations are yet incomplete.
2
Content available remote Precise Point Positioning in the airborne mode
EN
The Global Positioning System (GPS) is widely used for positioning in the airborne mode such as in navigation as a supplementary system and for geo-referencing of cameras in mapping and surveillance by aircrafts and Unmanned Aerial Vehicles (UAV). The Precise Point Positioning (PPP) approach is an attractive positioning approach based on processing of un-differenced observations from a single GPS receiver. It employs precise satellite orbits and satellite clock corrections. These data can be obtained via the internet from several sources, e.g. the International GNSS Service (IGS). The data can also broadcast from satellites, such as via the LEX signal of the new Japanese satellite system QZSS. The PPP can achieve positioning precision and accuracy at the sub-decimetre level. In this paper, the functional and stochastic mathematical modelling used in PPP is discussed. Results of applying the PPP method in an airborne test using a small fixed-wing aircraft are presented. To evaluate the performance of the PPP approach, a reference trajectory was established by differential positioning of the same GPS observations with data from a ground reference station. The coordinate results from the two approaches, PPP and differential positioning, were compared and statistically evaluated. For the test at hand, positioning accuracy at the cm-to-decimetre was achieved for latitude and longitude coordinates and doubles that value for height estimation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.