Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents two methods for evaluation of the effective wavenumber of nearly-Gaussian beams in laser interferometers that can be used for determination of a so called diffraction correction in absolute gravimeters. The first method, that can be simply used in situ, is an empirical procedure based on the evaluation of the variability of g measurements against the amount of light limited by an iris diaphragm and transmitted to a photodetector. However, precision of this method depends on the beam quality similarly as in the case of the conventional method based on measurement of a beam width. The second method, that is more complex, is based on beam profiling in various distances and on calculation of the effective wavenumber using the second spatial derivative of a non-ideal beam field envelope. The measurement results achieved by both methods are presented on an example of two absolute gravimeters and the determined diffraction corrections are compared with the results obtained by measurements of beam width. Agreement of methods within about 1 μGal have been obtained with average diffraction corrections slightly exceeding +2 μGal for three FG5(X) gravimeter configurations.
EN
A new method of optical frequency beat counting based on fast Fourier transform (FFT) analysis is described. Signals with a worse signal-to-noise ratio can be counted correctly comparing to the conventional counting method of detecting each period separately. The systematic error of FFT counting below 10 Hz is demonstrated and can be decreased. Additionally the modulation width of a frequency-stabilized laser with high frequency modulation index can be simultaneously measured during a carrier frequency measurement against an optical frequency synthesizer or other laser.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.