Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Dynamical property of hyperspace on uniform space
EN
First, we introduce the concepts of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in uniform space. Second, we study the dynamical properties of equicontinuity, expansivity , ergodic shadowing property, and chain transitivity in the hyperspace of uniform space. Let (X,μ) be a uniform space, (C(X),Cμ) be a hyperspace of (X,μ) , and ƒ:X→X be uniformly continuous. By using the relationship between original space and hyperspace, we obtain the following results: (a) the map ƒ is equicontinous if and only if the induced map Cƒ is equicontinous; (b) if the induced map Cƒ is expansive, then the map f is expansive; (c) if the induced map Cƒ has ergodic shadowing property, then the map f has ergodic shadowing property; (d) if the induced map Cƒ is chain transitive, then the map ƒ is chain transitive. In addition, we also study the topological conjugate invariance of (G,h) -shadowing property in metric G - space and prove that the map S has (G,h) -shadowing property if and only if the map T has (G,h) -shadowing property. These results generalize the conclusions of equicontinuity, expansivity, ergodic shadowing property, and chain transitivity in hyperspace.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.