Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Simulations of safety vales for fluid power systems
EN
Hydraulic power systems are widely used in heavy machinery. Safety of such a systems have a major importance due to the fact that any failure may cause environmental contamination or serious injury. One of the component which protects hydraulic drive systems against excessive rising of working pressure is a safety valve which aim is to maintain pressure in the systems below acceptable level. Pressure control valves which plays important role in a hydraulic systems may have very simple or complex structure. Even in case of the simplest structure of such valve modeling is not an easy task. The new quality in designing hydraulic valves bring CFD method and FSI (Fluid Structure Interaction) methods.
EN
Preventive methods are important group of methods used in the process of design and which are known as quality design methods. The aim of these methods is identification of potential failures and cause-and-effect relationships in consistent and systematic way, and then taking appropriate preventive or corrective actions. The well-known examples of preventive methods also used for modelling and analysis of the criticality (risk) factor are FMEA analysis and FTA analysis. A matrix FMEA analysis method has been presented and discussed in the work. The basic assumptions related to this method were characterized and algorithms for each stages of analysis have been presented. It has been presented practical application of FMEA method on example of selected components of hydraulic system.
EN
This article presents results of numerical modelling, simulation and test bench experiments of a hydraulic direct-acting relief valve was used as a safety valve. The analyzed safety valve was placed in a system consisting of a fixed-speed pump, a control valve, a hydraulic cylinder as an actuator and a second pressure valve in the load line used as a payload generator for the cylinder. In the first step mathematical model of the system was formulated in the form of a system of ordinary differential equations. Next, simulation model was created in Matlab/Simulink. Simulations were carried out for different values of the actuator payload. The obtained results include time series of pressure, flow rate and displacement of the actuator piston. In order to confirm simulation results, a test bench was built and series of experiments were carried out. High compliance of simulation and laboratory results was obtained. It was confirmed that the proposed solution with the relief valve used as a safety valve fulfills its task of protecting the hydraulic system from excessive pressure increase.
EN
The article deals with the issue of quality improvement of a gear transmission by optimizing its geometry with the use of genetic algorithms. The optimization method is focused on increasing productivity and efficiency of the pump and reducing its pulsation. The best results are tested on mathematical model and automatically modelled in 3D be means of PTC Creo Software. The developed solution proved to be an effective tool in the search for better results, which greatly improved parameters of pump especially reduced flow pulsation.
EN
Hydraulic valves are widely used in many branches and they are still developed and improved. Due to the problem with verification of flow phenomena which appears during valves operation numerical simulations methods are tools which allows to improved valves design. This paper presents numerical simulation of fluid flow inside flow control valve.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.