Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Due to the development of alternative propulsion systems, there is a need for LNG tanker turbine propulsion plants to regain their competitiveness. Previous research revealed effective methods to increase the thermal efficiency of the steam cycle based on quality assessment, and it was proposed that the latent heat of the main turbine exhaust steam could be recovered. Research was carried out for the steam cycle using regenerative heat exchangers fed by steam jet injectors. In this paper, an algorithm to determine the operating parameters of steam jet injectors, and the calculation results for different drive steam parameters are presented. The obtained results will be used as input parameters for further heat balance calculations of the proposed regenerative steam cycles.
EN
This paper presents the origins of marine steam turbine application on liquefied natural gas carriers. An analysis of alternative propulsion plant trends has been made. The more efficient ones with marine diesel engines gradually began to replace the less efficient plants. However, because of many advantages of the steam turbine, further development research is in progress in order to achieve comparable thermal efficiency. Research has been carried out in order to achieve higher thermal efficiency throughout increasing operational parameters of superheated steam before the turbine unit; improving its efficiency to bring it nearer to the ideal Carnot cycle by applying a reheating system of steam and multi stage regenerative boiler feed water heating. Furthermore, heat losses of the system are reduced by: improving the design of turbine blades, application of turbine casing and bearing cooling, as well as reduction in steam flow resistance in pipe work and maneuvering valves. The article identifies waste energy sources using the energy balance of a steam turbine propulsion plant applied on the liquefied natural gas carrier which was made out basing on results of a passive operation experiment, using the measured and calculated values from behavioral equations for the zero-dimensional model. Thermodynamic functions of state of waste heat fluxes have been identified in terms of their capability to be converted into usable energy fluxes. Thus, new ways of increasing the efficiency of energy conversion of a steam turbine propulsion plant have been addressed.
4
EN
This paper shows the latest evolution trends of propulsion plants of modern LNG tankers. Features of conventional and advanced steam plants were confronted with propulsion plants such as Dual Fuel - Diesel electric and plants equipped with slow speed two stroke diesel engines. Propulsion plants were compared in terms of plant efficiency, reliability and environmental. The shipyard’s order book and the active fleet of LNG carriers with a capacity above 65000 m3 were analyzed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.