Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.
EN
This paper presents the results of applying ennobled solid biomass via mechanical compaction or torrefaction as fuel for ships, in terms of fire safety, environmental protection, the increase in liquid fuel prices and the dwindling resources of crude oil. The object of investigation is a ship of the ro-pax ferry type, with low cruising range, which is intended for service on the Baltic Sea. The ship’s power system is discussed and the results of calculations of the thermal cycle for a steam turbine power plant are presented. We present a simplified comparative analysis of a fuel bunker for a ship with a power plant including biomass fired boilers, and for a ship with a conventional solution of a motor power plant supplied by ultra-low sulphur fuel originating from crude oil. The advantages of applying a fluidised bed biomass fired boiler are highlighted, and selected results from tests of this boiler are presented. In addition, we assess potential fire hazards on the ship resulting from the storage and transport of pellets, and from pellets after torrefaction.
3
Content available Improvements to a fire safety management system
EN
The statistics invariably show that most onboard fires originate in the engine room. In hazardous conditions, fires can spread to other rooms of the ship and cause the loss of human life, and can cause the ship to be out of service or lost completely. To prevent these serious consequences, the engine room crew should be aware of hazards and ways to prevent them. It is also advisable to support their routine activities and actions in critical situations with an appropriate management system. For this reason, a survey was conducted at the beginning of 2019 of engine room crew members employed by a European shipowner, as a contribution to an analysis of fire safety management. Based on the results of the survey, some of the elements of the fire safety management system of the ship engine room are described. A properly constructed system that is understandable and accepted by the crew is one of the most important factors in increasing fire safety on a ship. Familiarisation with adequate procedures can significantly contribute to the successful prevention of accidents. This paper also proposes a checklist based on suggestions by the crew, which may be helpful in onboard fire prevention.
EN
The article presents the problems related to the application of alternative fuel like solid biomass in the shipbuilding. The decreasing resources of the crude oil, the requirements regarding environmental protection as well as the increase of the liquid fuel prices were the reason for the study. The solid biomass comparing to the liquid or gaseous forms has relatively low calorific value. In order to increase this value the solid biomass is subject to the densification or torrefaction process and most often occurs in the shape of pellets. In this form it could be useful on ships. A test stand has been characterised where it can be experimentally verified whether ship’s rolling does affect the changes in flow resistance values during the pneumatic transportation of solid fuel from the storage facility to the boiler. On the basis of the measurements the hydraulic characteristics have been provided for the piping located on the movable platform with and without granular material. The changes in the platform oscillation period have influence on the change in the pressure inside transport piping for each investigated material. The results also show that the platform constantly inclinations do exert an influence on the pressure drop in the transport pipeline during transporting the granular material. It is smaller when the position is inclined. Comparing the results obtained for the different transported materials of a similar nature of the pressure fluctuations could be observed.
5
Content available Biogaz jako paliwo okrętowe
PL
Współczesne duże statki pasażerskie typu cruiser zabierają na pokład nawet ponad 6000 pasażerów. Wiąże się to koniecznością obróbki na statku ogromnej ilości ścieków i odpadów organicznych. Sposób postępowania ze ściekami i śmieciami dokładnie określa konwencja MARPOL w załącznikach IV i V. Ogólnie ścieki i odpadki mogą być gromadzone na statku i później zdawane na lądzie do dalszej obróbki. Mogą być także obrabiane na statku i odprowadzane po oczyszczeniu do wody w określonych rejonach pływania statku dzięki czemu unika się ich gromadzenia. Odpadki organiczne i ścieki stanowią jednak bardzo cenne źródło biomasy, która może być wykorzystana na cele energetyczne, w szczególności do produkcji biogazu. Biogaz może być produkowany na lądzie w instalacjach portowych ze zdawanych przez statki odpadów organicznych i ścieków bądź perspektywicznie, bezpośrednio na statku w kompaktowych biogazowniach. Niektóre z nowo budowanych statków pasażerskich zasilane są skroplonym gazem ziemnym (LNG) a więc możliwe jest jego zastąpienie biogennym odpowiednikiem tj. biometanem, będącym głównym składnikiem biogazu.W przypadku produkcji gazu już na statku możliwe będzie zwiększanie zapasu paliwa bez zawijania do portu. Aktualnie na świecie prowadzone są prace mające na celu opracowanie biogazowni na duże statki pasażerskie W artykule przedstawiono zagadnienia związane z koncepcją rozwiązania i ocenę korzyści wynikających z instalowania biogazowni na statkach pasażerskich.
EN
The application of waste heat from exhaust gas of ship’s main engines has become widely practiced as early as in the 1930s. Thus the increase of ship’s overall efficiency was improved. Nowadays all newly built ships of the 400 gross tonnage and above must have specified energy efficiency design index, which is a measure for CO2 emissions of the ship and its impact on the environment. Therefore, the design of waste heat recovery systems requires special attention. The use of these systems is one of the basic ways to reduce CO2 emissions and to improve the ship’s energy efficiency. The paper describes the ship’s heating systems designed for the use of waste heat contained in the exhaust gas of self-ignition engines, in which the heat carriers are respectively water vapor, water or thermal oil. Selected results of comparative exergy analysis of simplified steam, water and oil heating systems have been presented. The results indicate that the oil heating system is comparable to the water system in terms of internal exergy losses. However, larger losses of exergy occur in the case of a steam system. In the steam system, a significant loss is caused by the need to cool the condensate to avoid cavitation in boiler feed pumps. This loss can in many cases cause the negative heat balance of ship during sea voyage while using only the exhaust gas boilers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.