Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.