Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Finding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective optimization is necessary that leads to identifying a Pareto set. Here, a framework for fast multi-objective design of compact micro-strip couplers is discussed. We use a sequential domain patching (SDP) algorithm for numerically efficient handling of the structure bandwidth and the footprint area. Low cost of the process is ensured by executing SDP at the low-fidelity model level. Due to its bi-objective implementation, SDP cannot control the power split error of the coupler, the value of which may become unacceptably high along the initial Pareto set. Here, we propose a procedure for correction of the S-parameters’ characteristics of Pareto designs. The method exploits gradients of power split and bandwidth estimated using finite differentiation at the patch centres. The gradient data are used to correct the power split ratio while leaving the operational bandwidth of the structure at hand intact. The correction does not affect the computational cost of the design process because perturbations are pre-generated by SDP. The final Pareto set is obtained upon refining the corrected designs to the high-fidelity EM model level. The proposed technique is demonstrated using two compact microstrip rat-race couplers. Experimental validation is also provided.
EN
This work examines the reduced-cost design optimization of dual- and multi-band antennas. The primary challenge is independent yet simultaneous control of the antenna responses at two or more frequency bands. In order to handle this task, a feature-based optimization approach is adopted where the design objectives are formulated on the basis of the coordinates of so-called characteristic points (or response features) of the antenna response. Due to only slightly nonlinear dependence of the feature points on antenna geometry parameters, optimization can be attained at a low computational cost. Our approach is demonstrated using two antenna structures with the optimum designs obtained in just a few dozen of EM simulations of the respective structure.
EN
A simulation-based optimization approach to design of phase excitation tapers for linear phased antenna arrays is presented. The design optimization process is accelerated by means of Surrogate-Based Optimization (SBO); it uses a coarse-mesh surrogate of the array element for adjusting the array’s active reflection coefficient responses and a fast surrogate of the antenna array radiation pattern. The primary optimization objective is to minimize side-lobes in the principal plane of the radiation pattern while scanning the main beam. The optimization outcome is a set of element phase excitation tapers versus the scan angle. The design objectives are evaluated at the high fidelity level of description using simulations of the discrete electromagnetic model of the entire array so that the effects of element coupling and other possible interaction within the array structure are accounted for. At the same time, the optimization process is fast due to SBO. Performance and numerical cost of the approach are demonstrated by optimizing a 16-element linear array of microstrip antennas. Experimental verification has been carried out for a manufactured prototype of the optimized array. It demonstrates good agreement between the radiation patterns obtained from simulations and from physical measurements (the latter constructed through superposition of the measured element patterns).
EN
Re-design of a given antenna structure for various substrates is a practically important issue yet non trivial, particularly for wideband and ultra-wideband antennas. In this work, a technique for expedited redesign of ultra-wideband antennas for various substrates is presented. The proposed approach is based on inverse surrogate modeling with the scaling model constructed for several reference designs that are optimized for selected values of the substrate permittivity. The surrogate is set up at the level of coarse-discretization EM simulation model of the antenna and, subsequently, corrected to provide prediction at the high-fidelity EM model level. The dimensions of the antenna scaled to any substrate permittivity within the region of validity of the surrogate are obtained instantly, without any additional EM simulation necessary. The proposed approach is demonstrated using an ultra-wideband monopole with the permittivity scaling range from 2.2 to 4.5. Numerical validation is supported by physical measurements of the fabricated prototypes of the re-designed antennas.
EN
In this paper, a novel structure of a compact UWB slot antenna and its design optimization procedure has been presented. In order to achieve a sufficient number of degrees of freedom necessary to obtain a considerable size reduction rate, the slot is parameterized using spline curves. All antenna dimensions are simultaneously adjusted using numerical optimization procedures. The fundamental bottleneck here is a high cost of the electromagnetic (EM) simulation model of the structure that includes (for reliability) an SMA connector. Another problem is a large number of geometry parameters (nineteen). For the sake of computational efficiency, the optimization process is therefore performed using variable-fidelity EM simulations and surrogate-assisted algorithms. The optimization process is oriented towards explicit reduction of the antenna size and leads to a compact footprint of 199 mm2 as well as acceptable matching within the entire UWB band. The simulation results are validated using physical measurements of the fabricated antenna prototype.
EN
This paper addresses computationally feasible multi-objective optimization of antenna structures. We review two recent techniques that utilize the multi-objective evolutionary algorithm (MOEA) working with fast antenna replacement models (surrogates) constructed as Kriging interpolation of coarse-discretization electromagnetic (EM) simulation data. The initial set of Pareto-optimal designs is subsequently refined to elevate it to the high-fidelity EM simulation accuracy. In the first method, this is realized point-by-point through appropriate response correction techniques. In the second method, sparsely sampled high-fidelity simulation data is blended into the surrogate model using Co-kriging. Both methods are illustrated using two design examples: an ultra-wideband (UWB) monocone antenna and a planar Yagi-Uda antenna. Advantages and disadvantages of the methods are also discussed.
PL
Przedstawiono nowe rozwiązanie układowe filtru pasmowo-przepustowego wykonanego w oparciu o sprzężone linie mikropaskowe.
EN
The paper presents a new design of band-pass filter circuit based on coupled microstrip lines.
8
Content available remote Compact broadband multi-way 1:6 power divider
EN
This paper introduces a design flow of a microstrip multi-way 1:6 power divider incorporating photonic bandgap (PBG) structures. The method proposed has enabled the achievement of considerable miniaturization (15%) together with transmission characteristics enhancement (141% bandwidth). Measured results show significant similarity to theoretical characteristics, which proves the attractiveness of presented design methodology.
PL
W pracy zaprezentowano metodykę projektowania szerokopasmowego, wielodrożnego dzielnika mocy typu 1:6 wykonanego w technologii niesymetrycznych linii paskowych. Zaburzenie ciągłości metalizacji paska sygnałowego poprzez implementację struktur PBG (ang. Photonic Bandgap) umożliwiło osiągnięcie zarówno 15% miniaturyzacji, jak i poszerzenia pasma pracy do 141% dla częstotliwości środkowej 4 GHz. Wyniki eksperymentu wykazujące dużą zgodność z charakterystykami teoretycznymi potwierdzają zasadność zaproponowanej metodyki projektowania.
9
Content available remote Compact antenna array comprising fractal-shaped microstrip radiators
EN
A design method of antenna array consisting of eight microstrip patches modified with Sierpinski fractal curves has been presented and experimentally validated in this paper. Method proposed has enabled the achievement of considerable miniaturization of array length (26%), together with multi-band behavior of the antenna, which proves the attractiveness of presented design methodology and its ability to be implemented in more complex microstrip structures.
PL
W pracy zaprezentowano metodykę projektowania ośmioelementowego szyku antenowego w technologii niesymetrycznej linii paskowej z wykorzystaniem promienników o brzegu zmodyfikowanym krzywą fraktalną w postaci krzyża Sierpińskiego. Zastosowanie nowego kształtu łat pozwoliło na gęstsze upakowanie elementów szyku prowadząc do jego 26% miniaturyzacji i poszerzenia pasma pracy. Wyniki eksperymentu wskazują na wielozakresową pracę zaproponowanego obwodu.
PL
W artykule zaprezentowano metodologię projektowania zminiaturyzowanego sprzęgacza łatowego z perforowaną metalizacją masy. Proces projektowania oparty jest na zmodyfikowanym algorytmie genetycznym wykorzystującym środowisko Sonnet do pełnofalowych symulacji elektromagnetycznych przeprowadzanych w celu znalezienia optymalnej topografii projektowanego obwodu. Wyniki eksperymentalne i teoretyczne cechuje duża zbieżność, co dowodzi zasadności proponowanej metodyki projektowania, prowadzącej do nowych rozwiązań układowych charakteryzujących się znacznym stopniem miniaturyzacji i poprawą charakterystyk transmisyjnych w odniesieniu do klasycznych podzespołów referencyjnych.
EN
The following paper introduces a design methodology of a microstrip patch coupler incorporating defected ground structures (DGSs), leading to an essential level of component's size reduction. The method proposed utilizes a genetic algorithm fed by numerical data given by Sonnet E-M solver to find an optimal geometry of the analyzed circuit. Measured results prove the utility of the proposed design methodology, presenting enhanced characteristics (bandwidth improved by ∼26%) and a considerable miniaturization (∼49%) of the prototype circuit in comparison to its conventional counterpart.
PL
W referacie zaprezentowano zminiaturyzowaną, dwuzakresową antenę szczelinową zasilaną poprzez linię komplanarną zawierającą filtrujące struktury EBG. Szerokopasmową antenę szczelinową o konwencjonalnej topografii zmodyfikowano umieszczając prostą komórkę EBG w układzie zasilania anteny, otrzymując w rezultacie dwa zakresy pracy struktury antenowej: 2,5...5,3 GHz oraz 13,5...16,3 GHz, przy współczynniku fali stojącej WFS ≤ 2. Wyniki eksperymentalne oraz charakterystyki teoretyczne cechuje znaczna zbieżność, co świadczy o przydatności zaproponowanego rozwiązania jako techniki kształtowania charakterystyki odbiciowej struktury antenowej.
EN
A novel compact dual-band slot antenna fed by a coplanar waveguide (CPW) incorporating an electromagnetic band gap (EBG) structure has been proposed. A classic slot antenna fed by CPW presents wideband reflection coefficient characteristics. By adding a simple EBG filtering structure into CPW feedline, a dual-band performance ranging from 2.5 to 5.3 GHz and from 13.5 to 16.3 GHz, with the voltage standing wave ratio ≤ 2, has been achieved. Measured results are found to be in satisfactory accordance with theoretical results and confirm the utility of proposed solution as a viable method of controlling the operating bandwidth.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.