Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Among the various thin film coating techniques, atomic layer deposition (ALD) has features of good controllability of the thickness, excellent step-coverage in 3-dimensional object even in the sub-nm thickness range at the relatively low deposition temperature. In this study, SnO2 thin films were grown by ALD in the variation of substrate temperatures from 150 to 250°C. Even such a low temperature may influence on the growth kinetics of the ALD reaction and thus the physical characteristics of thin films, such as crystallinity, film density and optical band gap, etc. We observed the decrease of the growth rate with increasing substrate temperature, at the same time, the density of the film was decreased with increasing temperature. Steric hindrance effect of the precursor molecule was attributed to the inverse relationship of the growth temperature and growth rate as well as the film density. Optical indirect band gap energy (~3.6 eV) of the ALD-grown amorphous SnO2 films grown at 150°C was similar with that of the literature value, while slightly lower band gap energy (~3.4 eV) was acquired at the films grown at higher temperature.
2
Content available remote An experimental study on optimizing for tandem gas metal arc welding process
EN
Purpose: To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. Design/methodology/approach: The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develop curve equation for predicting the optimized process parameters and quality characteristics by analysing the S/N ratio. Findings: The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process. Research limitations/implications: In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. Originality/value: This paper focused on the anode-cathode distance that can prevent arc blow in tandem GMA welding process. We also analysed the welding quality characteristics according to the bead geometry and welding parameters through S/N ratio dependent on the welding speed and flow rate variation of shielding gas. Finally, a mathematical model being able to predict the welding quality based on the given welding parameters using statistical method has been developed.
EN
Purpose: Recently, not only robotic welders have replaced human welders in many welding applications, but also reasonable seam tracking systems are commercially available. However, fully adequate control systems have not been developed due to a lack of reliable sensors and mathematical models that correlate welding parameters to the bead geometry for the automated welding process. Design /meth o d o lo g y/ap p ro ach : In this paper, two on-line empirical models using multiple regression analysis are proposed in order to be applicable for the prediction of bead width. For development of the proposed models, an attempt has been made to apply for a several methods. For the more accurate prediction, the prediction variables are first used to the surface temperatures measured using infrared thermometers with the welding parameters (welding current, arc voltage) because the surface temperature are strongly related to the formation of the bead geometry. The developed models are applied to monitor and control the bead width as welding quality. Findings: The developed two on-line empirical models are able to predict the optimal welding parameters required to achieve desired bead width and weld criteria, help the development of automatic control system and expert system and establish guidelines and criteria for the most effective joint design. Research lim ita tio n s /im p lic a tio n s : This research was concentrated to develop on the on-line empirical models that can predict bead width in robotic GMA welding process. The developed empirical models can only be employed to control the bead width for butt welding. O rig in ality /va lu e : It has been realized that with the use of the developed algorithms, the prediction of bead width becomes much simpler to even a novice user who has no prior knowledge of the robotic GMA welding process and optimization techniques.
EN
In this paper, we present a re-normalization method for a Doppler signal of a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as a transmitter and an iodine cell as a Doppler frequency discriminator. A frequency locking system that uses the absorption feature of iodine gas is too sensitive to the external or internal noises (iodine cell temperature instability, laser frequency fluctuation, environmental noises, etc.) to maintain its locking point ideally, and this frequency locking error makes the Doppler lidar system acquire the noises as the Doppler frequency shifts. To reduce the Doppler signal error induced by a frequency locking error, we used a re-normalization method by an addition of a laser beam path separated from a transmitter to the Doppler frequency discriminator for re-normalization. In this method, fluctuations of the Doppler signal were reduced using the reference signal. The reduced amount of standard deviation between the Doppler signal and the re-normalization signal was 4.838×10–3 and the Doppler signals showed a 53.3% fluctuation reduction of the averaged error value by this method.
EN
The effect of employing various sputtered underlayers in order to optimize the characteristics of Barium ferrite (BaM) thin films for magnetic recording media have been studied. BaM thin films and underlayers (Fe, Cr, Al2O3, Fe2O3, ZnFe2O4, TiO2) were prepared by rf/dc magnetron sputtering on (100) oriented bare Si substrate, and were crystallized by post-annealing. All the BaM films, except BaM/Fe/Si film, attained nearly the same perpendicular and in-plane coercivities. Perpendicular anisotropy was observed in BaM/Fe/Si film. The BaM/TiO2/Si exhibits the highest coercivity. However, regardless of the underlayer, BaM grains are randomly oriented. By adopting ZnFe2O4 as an underlayer, the interdiffusion of Si from substrate was prohibited to some degree. The microstructure of BaM in BaM/TiO2/Si was strongly dependent on both the microstructure of TiO2 underlayer and the total sputtering gas pressure. The control of an underlayer microstructure is one of the important factors to control grain size and shape of the BaM layer.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.