Rice is a major food crop globally, but yields are threatened by inefficient production practices. Laser land levelling is a technology that can enhance rice cultivars through optimised field conditions and water use efficiency. This study evaluated the effects of laser versus traditional land levelling on productivity and water savings of three rice cultivars in Egypt using a two-year split-plot field experiment with three replications. The land levelling methods (laser levelling, normal levelling, no levelling) were assigned to the main plots, and three Egyptian rice cultivars (‘Sakha 108’, ‘Giza 177’, ‘Giza 178’) were grown in the sub-plots. Data was collected on crop yield parameters, grain production, water use, and water use efficiency. Results showed that laser levelling increased plant height, flag leaf area, panicles per plant, filled grains per panicle, seed setting percentage, 1000-grain weight, and grain yield compared to traditional practices. The highest yields were obtained with laser levelling of ‘Sakha 108’ (12.22-12.31 Mg∙ha-1) and ‘Giza 178’ (12.20-12.29 Mg∙ha-1), while recorded 9.12-10.30 Mg∙ha-1 in control fields. Laser levelling reduced total water use by 1793 m3 ∙ha-1 without reducing yields. Among cultivars, ‘Sakha 108’ had the highest water use efficiency under laser levelling. Overall, laser land levelling increased rice productivity by enhancing yield components and water productivity. Adoption of laser levelling could increase rice yields sustainably with less water usage in Egypt and similar regions. These findings demonstrate the benefits of laser levelling for enhancing rice cultivation through improved agronomic performance and water savings.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.