Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 35

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The extortions that result in the vibrations of a hull of the combat vehicle have an impact on the tracked combat vehicle during the off-road driving. They may have a negative impact on the crew, internal equipment, shooting accuracy. A level of the hull loads depends on quality of the suspension system, which main responsibility consists in minimising an amplitude of the vibrations. Therefore, it is necessary both to improve a structure of the suspension system, and its components, as well as their optimisation. The tests of the driving smoothness of the vehicle and quality of the suspension elements can be realised both within a frame of the model tests and while driving in the real conditions. The assessment criteria of the driving smoothness are directly related to the negative influence of the vibrations to the human body. The suspension quality should be assumed both upon an execution of the vehicle prototype, and during the design or modernisation phase. It results both in reducing the time, and minimisation of the costs and risk related to the structure development. The model tests enable to evaluate the driving smoothness and comfort prior to an execution of the prototype. The tests on the test tracks in the final phase of the development are carried out in order to evaluate the driving smoothness.
PL
Dostępna literatura badawcza na temat materiałów geopolimerowych przygotowanych z krzemionkowego popiołu lotnego poświęcona jest głównie zagadnieniom wiązania i kształtowania właściwości mechanicznych tychże materiałów w temperaturze wyższej niż 45°C. Stosowanie podwyższonej temperatury z praktycznego punktu widzenia, to jest zastosowania spoiw geopolimerowych in situ w warunkach budowlanych, jest pewną niedogodnością. Niniejszy artykuł poświęcono zagadnieniu wiązania zaczynów geopolimerowych w temperaturze 5°C oraz 25°C. Jako dodatek modyfikujący proces wiązania oraz właściwości wytrzymałościowe zaczynu geopolimerowego wykorzystano zmielony granulowany żużel wielkopiecowy (Granulated Blast Furnace Slog – GBFS) w ilości od 0 do 50% (w/w, względem popiołu lotnego). Dodanie żużla wielkopiecowego w ilości 15% (w/w) pozwala na otrzymanie zaczynu geopolimerowego, którego początek wiązania w temperaturze 5°C jest zbliżony do tego zmierzonego w temperaturze 25°C dla próbki niezawierającej GBFS. Analogiczny efekt obserwowany jest w przypadku wytrzymałości na ściskanie stwardniałych zaczynów geopolimerowych zmierzonej po 56 dniach. W temperaturze wyższej niż 5°C zaobserwowano spadek wytrzymałości materiału w dłuższych okresach przechowywania, jedynie w przypadku, w którym połowę spoiwa stanowił granulowany żużel wielkopiecowy. Wyniki badań zaczynów wiążących w temperaturze 5°C i 25°C porównano z tymi otrzymanymi dla zaczynów poddanych procesowi wygrzewania.
EN
Most of the available literature on fly-ash class F based geopolymers was on properties of slurries hardened by heat curing, which is considered as a limitation for cast in situ application at low ambient temperatures. Thus, this work was dedicated to the setting and gaining the mechanical properties of geopolymers slurries in the temperature 5°C and 25°C. In this work, the ground blast furnace slag (GBFS) has been used to alter the geopolymerisation behavior of fly ash based geopolymer slurry. We have shown that the addition of GBFS at weight concentration of 15% cause the geopolymer slurry to set in the same time manner as in the ambient temperature. Also, the mechanical properties measured after 56 days of incubation were at a similar level. We have observed that during the curing of geopolymer slurries with concentration of GBFS around 50%, long term durability was decreased. The results obtained for samples cured at the temperature of 5°C and 25°C were compared to these obtained at temperatures higher than 25°C.
PL
Beton mrozoodporny to materiał odporny na agresywne działanie środowiska wywołane cyklicznym zamrażaniem oraz rozmrażaniem. Zamarzająca woda zwiększa objętość o ok. 9%, co bezpośrednio może prowadzić do poważnych uszkodzeń struktury materiału. Jedną z najskuteczniejszych metod poprawiających mrozoodporność materiału jest napowietrzenie twardniejącej mieszanki betonowej. Istnieją przesłanki do stwierdzenia, że stosunkowo mało znany beton geopolimerowy uzyskuje dużą mrozoodporność bez konieczności napowietrzenia. W artykule porównano mrozoodporność betonu zawierającego cement hutniczy oraz środek napowietrzający, z betonem z zaczynem geopolimerowym, bez domieszek chemicznych.
EN
Frost resistant concrete is a material resistant to aggressive environmental effects caused by cyclic freezing and thawing. When freezing, water increases its volume by about 9%. That phenomenon can lead directly to serious damage in the structure of the material, influencing mainly its mechanical properties. One of the most effective methods for improvement of frost resistance of concrete materials is to aerate hardening concrete mix. There is evidence that barely known geopolymer concrete reach high frost resistance without aerating. The article presents the comparison of the frost resistance of concrete prepared on the basis of blast furnace cement,with aerating agent, with concrete based on geopolymer slurry without chemical additives.
EN
The work presents selected results of experimental research on special purpose vehicles used on military training grounds, and bench tests of their main structural elements. The results are connected mainly with identifying the main vibration parameters of those vehicles (regarding weight, resilience and damping), and with the assessment of the level of dynamic loads. The more output data experimental research provides, the more input data we have for designing models. Determined in laboratory tests, weight parameters (regarding weight and moments of inertia), coefficients of stiffness and damping, as well as selected resilience and damping characteristics, are applied in the process of creating the numerical models of assemblies, systems, and complete vehicles. The numerical models created are subject to full verification in order to minimize the differences between the real objects and their representations. The models are applied in multivariate simulation tests of the existing design solutions, upgrading them, or creating new designs. Due to a certain sensitivity of the range of special purpose vehicles, the results of experimental tests and simulation analyses presented in the work are mainly qualitative rather than quantitative.
EN
Military vehicles are used less intensively than the civil ones, and many types of the vehicles used by the army are stored for a long time. Therefore, this type of vehicles can be used even for a dozens of years. Due to the constant development of technology, used armament and military equipment has to be adjusted to current needs. The above applies also to recovery vehicles, including field workshops. This work analyses the level of safety and comfort of the crew of the modified field workshop (Sarna II) when the vehicle is moving under various conditions. The scope of improvement included two seats inside workshop for the transportation of the crew members. Experimental research involved measuring the accelerations on the seats of the crew and the noise inside the vehicle body. The assessment was conducted on the basis of the highest value of 8-hour of the exposure to the whole body vibrations A(8). The accelerations acting on the seats were determined mainly by the kind of the road, its roughness and the speed of the vehicle. The occupational risk connected with the exposure to the mechanical vibrations was in most cases assessed to be low or moderate. The risk was assessed to be high only when the vehicle was moving on the dirt road. Results of experimental researches indicated that passengers travelling in the body of Sarna II workshop, mounted on the underbody of STAR 266M2 vehicle, have ensured proper conditions of transport, both in terms of exposure to mechanical vibrations and to the noise.
PL
W ramach pracy prezentowane są wyniki badań eksperymentalnych dotyczących różnych prac naukowobadawczych wspartych wiedzą ekspercką, analizą dostępnych materiałów i studiami literaturowymi, które nie uwzględniają oddziaływania na pojazd wojskowy szeroko rozumianej problematyki wybuchu niekontaktowego. Przedstawiono wybrane wyniki badań obciążeń dynamicznych dla czołgów, bojowych wozów piechoty, kołowych transporterów opancerzonych i innych pojazdów wojskowych. Badania eksperymentalne realizowano zgodnie z obowiązującymi przepisami w MON z uwzględnieniem norm obronnych i oryginalnych procedur badawczych opracowanych przez zespół.
EN
As part of the work presents the results of experimental investigations on various scientific-research works supported by expertise, analysis of available materials and literature studies that do not take into account the impact on the military vehicle the broader issue of non-contact explosion. The paper presents selected results of dynamic load for tanks, infantry fighting vehicles, wheeled armored personnel carriers and other military vehicles. Experimental investigations carried out in accordance with the applicable rules at the Ministry of National Defence, taking into account the defense standards and original research procedures developed by the team.
EN
Since the beginning of the 90’s, a scientific team in the Motor Vehicle and Transport Institute of the Mechanical Department in the Military University of Technology, has been involved in the model and experimental tests of the existing structures of the military vehicles (tanks, combat infantry vehicles and wheeled armoured carriers) in the aspect of their modernization. A part of works is related to the military vehicles included in the army’s equipment and the other parts are related to newly designed vehicles. In both cases issues related to the behaviour of selected assemblies and the whole vehicle, structure during threats posed by the reality of contemporary battlefield or armed symmetric or asymmetric conflicts are analysed. Selected effects of the tests and analyses will be presented mostly within the qualitative scope due to the data sensitivity. Contemporary design of military vehicles requires involvement of various research methods and specialized calculation software. The results obtained during performed various experimental tests make a valuable basis for verification of numerical models used in design process and multi-option simulation calculations.
EN
This paper presents the results of the studies on a special vehicle Polaris Ranger 6×6 800 equipped with the ”Crossbow” antiaircraft rocket launcher, manufactured by TELESYSTEM-MESKO Sp z o. o. Implementation and Manufacture Centre. The supporting structure of the launcher made the main object of the analysis. The essential goal of that undertaking was to obtain a structure of resistance assuring reliable system operation in various conditions of use. In order to reach that goal, the experimental as well as the model tests have been performed on the launcher vehicle. The experimental tests were carried out during multi-variant rides on the paved roads and in the wilderness of significant level of unevenness. Significant information on the level, directions and nature of affecting dynamic loads and the effects of their influence on the vehicle elements. The analysis of obtained results also provided the data required for a development of a model of the object of the studies. A MES model of the object of the studies was prepared in the LS-DYNA system. A high pressure was put on modelling a complex chassis of the launcher and mutual reaction of assemblies and parts. A generalized issue on the own properties was solved – frequencies and associated forms of vibrations of own main assemblies were designated. Resistance calculations were carried out for assumed loads. In principle, loads imposed by normative requirements for a particular class of armament and military equipment were assumed. Loads resulting from potential conditions of use and installation on other carriers were also included. The tests were performed for various load variants. Sensitive elements of the chassis were modified and highly satisfying results were obtained. It gives a reason to think that the chassis is resistant to expected and difficult operation conditions and assures that the whole system will work reliably.
EN
This paper presents issues related to the process of designing a 30-feet container to be used as a mobile laboratory for collecting the environmental samples and identification of biological threats. Tactical and technical assumptions for the container, taking into account the requirements of the transport and movement of the army at long distances and in the difficult areas by means of transport characterized by increased traction properties, made the starting point. A possible way of relocation on the land roads using commonly available and military means of transport, possibilities of loading and unloading using the autonomic system and automatic levelling system are described. It describes the process of creating the MES model of the supporting structure and assumptions taken for that purpose. The basic assumption included invariability of shape, geometry and dimensions of a container compared to containers recognized in the world as the standard ones. Some results of numerical calculations carried out at two stages are presented. At the first stage, the issues on the own values were solved. Frequencies of own vibrations and associated forms of vibrations were identified. At the second stage, forced container vibrations were analysed. Resistance calculations were performed for the supporting structure of the container in the aspect of evaluation of the strain condition of the whole structure, as well as its components for assumed load variants. A variability of resistance calculations takes into account such cases as the influence of the under-container trailer riding on the uneven ground, loading and unloading a container from a trailer using autonomous system, diversity of loads on the supports resulting from the change of the ground density under the supports. A preliminary analysis of container transport possibilities and transport unit traction properties have been also carried out.
PL
W Instytucie Pojazdów Mechanicznych i Transportu Wydziału Mechanicznego Wojskowej Akademii Technicznej funkcjonuje, od połowy lat osiemdziesiątych, zespół naukowy zajmujący się badaniem i analizą obciążeń dynamicznych, komfortu jazdy, własności trakcyjnych i bezpieczeństwa pojazdów mechanicznych. W pracy zasygnalizowano specyfikę użytkowania i warunki eksploatacji pojazdów mechanicznych, w tym w zastosowaniach wojskowych. Zaprezentowano wybrane wyniki zrealizowanych przez zespół badań (modelowych i eksperymentalnych). Przyjęte obciążenia działające na rozważane pojazdy (lub ich elementy) wynikają z warunków użytkowania, a w tym m. in. z ruchu po nierównościach terenowych, strzelania z armaty dużego kalibru, oddziaływania min lub improwizowanych ładunków wybuchowych, trafienie pociskiem nie powodującym przebicia. Z uwagi na rodzaj analizowanych pojazdów przedstawione rezultaty mają zasadniczo charakter jakościowy.
EN
The Institute of Motor Vehicles and Transportation in the Mechanical Faculty of Military University of Technology working, since the mid-eighties, the scientific team involved in research and analysis of dynamic loads, vehicle ride comfort, driveability and safety of motor vehicles. The work signals the specific use and operating conditions of motor vehicles, including military applications. The paper presents selected results of research carried out by a team (modeling and experimental). Assumed loads acting on the considered vehicles (or their components) due to terms of use, including, among others. movement of rolling terrain, shooting with large caliber guns, impact of min or improvised explosive devices, missile hit causes no breakthrough. Due to the nature of the analyzed vehicles presented results are essentially qualitative.
EN
Paper presents the results of numerical research on the influence of the movement conditions (velocity and various types and parameters of obstacles) on the level of dynamic loads of the body shell and the vehicle crew of the basic version of Wheeled Armoured Personnel Carrier (Wheeled APC) ROSOMAK. The research work was aimed at analysis of the dynamic loads resulting from the overcoming various terrain obstacles. Kinematic constraints acting on suspension used during tests were random and deterministic, e.g. sine, cosine, triangle as well as mixed, imitating fallen tree trunk on smooth surface. Simulations were carried out with the genuine proprietary software for numerical analysis of dynamics of multi-axis vehicles equipped with independent suspension. The paper consists description of the mathematical model of multi-axis vehicle, deterministic and random generated inputs and range of performed tests. Time courses of displacement, velocity, vertical and angular (longitudinal and transverse) accelerations were determined for chosen parts of vehicle. Paper also contains time courses of deflection for every suspension wheel and dynamical reactions of the ground as well as selected time charts and cumulative statistics. Finally paper presents conclusions formulated about dynamic loads of APC ROSOMAK depending on parameters and types of obstacles and vehicle velocity.
12
Content available remote Badania modelowe czołgu lekkiego na bazie wielozadaniowej platformy bojowej
PL
W artykule przedstawiono rezultaty badań modelowych demonstratora czołgu lekkiego na bazie wielozadaniowej platformy bojowej „Anders”. Badania zrealizowano w dwóch etapach. W pierwszym etapie przeanalizowano obciążenia dynamiczne działające na pojazd podczas jazdy oraz właściwości trakcyjne modelu czołgu z hydromechanicznym układem napędowym. W drugim etapie przeprowadzono badania właściwości trakcyjnych. Przedstawione rezultaty badań należy potraktować jako zrealizowane dla hipotetycznych warunków.
EN
Modelling test results of light tank demonstrator Based on "Anders" multitask combat platform were presented in the paper. Tests were executed in two stages. In the first stage, dynamic loads that act to a vehicle being in motion as well as traction features of the tank model provided with hydro-mechanical drive system were analyzed. In the second stage the tests of traction properties were performed. Tests results presented are to be considered as execution of assumed conditions.
13
PL
W artykule przedstawiono niektóre wyniki badań eksperymentalnych demonstratora czołgu lekkiego na bazie wielozadaniowej platformy bojowej „Anders”. Badania zrealizowano w dwóch etapach i miały one charakter badań wstępnych. Pierwszy etap obejmował strzelanie z uzbrojenia głównego, w tym określenie poziomu obciążeń i stanu wytężenia struktury nośnej kadłuba czołgu. Drugi etap dotyczył badań drogowych w aspekcie oceny właściwości trakcyjnych i poziomu obciążeń dynamicznych członków załogi. Ze względu na obiekt badań przedstawione, wybrane, rezultaty mają charakter jakościowy.
EN
Certain experimental test results of light tank demonstrator based on "Anders" multitask combat platform were presented in the paper. Tests were performed in two stages and were of initial examinations feature. The first stage included firing by means of main armament, including determination of load level and effort state of tank hull load-carrying structure. Second stage concerned road tests taking into consideration traction properties and dynamic load level of crew members. Due to the object of tests, the presented and selected results are of quality character.
EN
The paper describes the operating conditions of multi-axial special vehicles presents the tasks and risks during the so-called peacekeeping and stabilization mission. Given are described risks of travel on the roads and unpaved roads, in towns and hilly terrain. To be able to carry out driving in difficult conditions, the main components of fighting vehicles must have a high reliability. This also applies to the burden of combat. The paper presents a method to assess the condition of the suspension, consequently, its influence on dynamic loads on the crew and the internal equipment of the vehicle, presents a mathematical model of the vehicle similar to the multi-axis wheeled armoured personnel carrier. Describes the numerical model developed on the basis of it. It concerns on performed research for the most common cases. Are examples of the results of numerical estimates of the impact on the failure of the suspension, including damage to the wheels and suspension components, on the level of dynamic loads acting on the vehicle, its equipment and people stay in it. The model vehicle is a versatile tool for analyzing the dynamics of different types of vehicles, including tracked combat vehicles and multiaxial vehicles.
15
Content available Operational loads of combat vehicles
EN
The paper describes dynamic load-generating sources and their effects on combat vehicles (CV), placed people and equipment within it. The variety of the operation conditions causes a complex dynamic load, both in terms of level, direction and distribution. The effects of the impacts are shown in photographs. It is important to know the level of loads in terms of the development of resistant and safe high-speed tracked combat vehicles. The selected results of its own researches of high-speed tracked combat vehicles were presented. Research were carried out under conditions similar to those typical for this class of vehicles, both during the rides on the road, the ground and obstacles on the specially constructed for this purpose. The results of research and analysis are compared in the form of graphs and the estimated value. The paper presents angular movement of the hull of the CV as well as displacements of carrying wheels during overcoming a single obstacle, elastic characteristics of hydro-pneumatic suspension components, distribution of pressure acting on a selected area of the bottom of the hull after mine explosion and power spectral density estimator of tank gun vibration as well as being the source longitudinal vibration of the hull tank. The presented scope and methodology allows the multi-variants investigation and estimate the loads of the hall, interior fittings and people in special vehicles and other objects that may be exposed to this type of loads.
EN
The results of the experimental research on the influence of the special vehicle movement conditions on the body shell and the vehicle crew dynamic load will be presented in the paper. ROSOMAK Wheeled Armoured Personnel Carrier (Wheeled APC), the basic version, was the subject of the research. The research work was aimed at analysis of the dynamic loads resulting from the deterministic inputs and driving on the selected types of surfaces generating random kinematic inputs. The personnel carrier service conditions, measuring apparatus, and testing methods will be described. The vertical accelerations of the selected points of the vehicle, and deflection of the prime and second suspension of the vehicle left side were measured. The time and the acceleration RMS value spectrum charts for the selected implementations will be presented. The cumulative statistics will be shown in the form of a table. The conclusions regarding the influence of the road surface on the personnel carrier driver's working comfort will be formulated. The assessment of the suspension quality will be included in the conclusions. Driving on the smooth surface is comfortable. However, the road surface worsening causes decreased proficiency sense until the exposure limit boundary is reached when the vehicle drives on a poor quality cobble road with 50 km/h speed. The vehicle basic version is not fitted with the seats for assault troops, therefore the influence of the road irregularities on the centre of mass of the body shell, and the driver's and commander's seats were determined. It is recommended to make further tests on the personnel carrier combat and special versions.
EN
Participation of Polish military contingent in peach and stabilization missions resulted in the need for new vehicles. Special vehicles - multiaxle ones of good protection abilities and high motion dynamics - have to be adjusted to operation in various climate and terrain conditions. The work presents operation conditions of the wheeled armoured carriers resulting from the execution of required tasks. Threats resulting from driving on unpaved roads and wilderness have been presented as well as their influence on the motion dynamics, technical condition of vehicle chassis, durability and reliability. It is particularly important for the passenger safety. A mathematical vehicle model, imitating special multiaxle vehicle, have been presented. Calculation abilities of original numerical software for the analysis of vehicle traction characteristics have been presented. Mechanical and hydromechanical drive vehicles can be analysed. Examples of calculation results, illustrated on the diagrams, have been also included. Influence of selected technical - structural parameters on a multiaxle vehicle has been shown. Their influence on traction characteristics and dynamic loads affecting the vehicle, its internat equipment and the passengers has been estimated.
18
Content available remote Combat vehicle dynamic load tests in the aspect of the operation safety
EN
The scientific team, working in the Mechanical Vehicle and Transport Institute of the Mechanical Department of the Military Technical Academy since the 90's, has been dealing with the analysis of dynamic loads of combat vehicles (tanks, infantry combat vehicles and wheeled armoured carriers). The work presents the combat vehicle tasks and operation tasks and conditions. Possible threats and possible effects of their influence were described on the basis of available information. The results of own model and experimental tests of dynamic loads affecting the aforementioned vehicles were presented. Selected analysis results were presented in a form of characteristics, diagrams and tables. Due to a type of analysed vehicles, the results are of qualitative nature rather than the quantitative one.
PL
Pracujący, w Instytucie Pojazdów Mechanicznych i Transportu Wydziału Mechanicznego WAT, od początku lat 90-tych zespół naukowy zajmuje się badaniem oraz analizą obciążeń dynamicznych wozów bojowych (czołgów, bojowych wozów piechoty oraz kołowych transporterów opancerzonych). W pracy przedstawiono zadania oraz warunki eksploatacji wozów bojowych. Opisano potencjalne zagrożenia oraz, na podstawie dostępnych informacji, ewentualne skutki ich oddziaływania. Zamieszczono wyniki własnych badań modelowych oraz eksperymentalnych obciążeń dynamicznych działających na w/w pojazdy. Wybrane rezultaty analiz zaprezentowano w postaci charakterystyk, wykresów i tabel. Z uwagi na rodzaj analizowanych pojazdów rezultaty mają głównie charakter jakościowy a nie ilościowy.
PL
Współczesne i przyszłe pole walki charakteryzować się będzie dużą dynamiką działań zarówno w działaniach obronnych, jak i zaczepnych. Może się zdarzyć, że nie zawsze do pododdziałów pancernych i zmechanizowanych działających w pierwszym rzucie dotrze zaopatrzenie materiało-wotechniczne. Dotyczy to szczególnie paliwa do silników napędowych pojazdów. Dlatego też w wielu wypadkach do ich zasilania (jako silników wielopaliwowych lub przystosowanych do pracy na paliwach zastępczych) wykorzystywane może być paliwo zastępcze. Paliwo, którego parametry niekiedy znacznie różnią się od parametrów oleju napędowego. Istotne jest zatem, aby przy planowaniu zadań bojowych móc oszacować ich dynamikę. W pracy podjęto próbę oszacowania właściwości dynamicznych pojazdu przy zasilaniu paliwami zastępczymi. Przedstawiono wyniki obliczeń trakcyjnych gąsienicowego wozu bojowego oraz wpływ zasilania silnika paliwem odnawialnym na jego ruchliwość.
EN
Modern and future battle field will be characterized by high dynamics of operations, both defensive and off ensive ones. It is possible, that armoured troops of the first attack will suffer from shortages of supplies of materials and other equipment, especially propellants. That is why, in many cases, it is practised to adapt engines to various fuels. Substitute propellants, as a rule, have lower combustion features and they demand special treatment, e.g., aviation petrol in diesel engines. It is substantially important to know the influence of substitutes on the dynamics of vehicles. The paper describes the attempt to estimate dynamic features of combat vehicles using substitute propellants. The results of traction calculations of tracked combat vehicle were shown and impact of powering with renewable fuel on the vehicle mobility was presented.
20
Content available Obciążenia dynamiczne gąsienicowego wozu bojowego
PL
Wśród gąsienicowych wozów bojowych szczególnie wysokimi walorami wyróżniają się czołgi i wozy bojowe piechoty. Są one uniwersalnymi środkami walki, działającymi skutecznie zarówno w działaniach zaczepnych jak i w obronie, w różnych warunkach, stanowiąc podstawowy środek walki wojsk lądowych. O przydatności gąsienicowych wozów bojowych decydują ich główne cechy bojowe, do których zalicza się siłę ognia, opancerzenie i ruchliwość. Ruchliwość odzwierciedla zdolności dynamiczne i manewrowe. To od niej przede wszystkim zależy tempo działań bojowych, możliwość manewru wojskami oraz zdolności przekraczania różnych przeszkód, zarówno naturalnych jak i sztucznych. Właściwości dynamiczne wozów bojowych to głównie ich prędkości maksymalne i średnie w terenie oraz zdolność przyspieszania. Na ruchliwość duży wpływ ma silnik, układ napędowy i gąsienicowy układ jezdny. Aby zapewnić dużą ruchliwość, układ napędowy powinien charakteryzować się wysokim wskaźnikiem mocy jednostkowej, układ jezdny natomiast powinien stwarzać warunki płynnej jazdy oraz amortyzację wstrząsów i szarpnięć. Ruchliwość wozów bojowych ma istotny wpływ na żywotność czołgu oraz prawdopodobieństwo ich trafienia, jest elementem tzw. obrony czynnej. Wzrost ruchliwości bardzo ściśle wiąże się ze wzrostem obciążeń dynamicznych, które działają na kadłub pojazdu i jego załogę oraz wyposażenie wewnętrzne. W pracy podjęto próbę oceny wpływu niektórych parametrów na obciążenia dynamiczne gąsienicowego wozu bojowego, w oparciu o analizę stanu zagadnienia jak i badania własne.
EN
Tanks and infantry fighting vehicles stand out with especially high advantages from among other tracked combat vehicles. They are universal combat means, operating effectively in offensive operations as well as in defence, in various weather conditions, providing the most essential combat weapons of the army. Usefulness of those vehicles is determined by their fire power, armour and mobility, which rank among the main combat features. Mobility represents dynamic and manoeuvre capabilities. On mobility first of all depends military action pace, possibility of troops movement and ability of clearing various, natural or artificial obstacles. Dynamic capabilities of combat vehicles include their peak and mean velocities in field as well as acceleration ability. Significant influence on mobility of the vehicles have the proper engine, power drive and suspension system. To provide suitable mobility of the vehicle, the power drive system should be characterized by high power ratio, whereas suspension system should ensure conditions of fluent motion and absorption of shocks and rattles while moving. Mobility of combat vehicles has real influence on their survival at battlefield and probability of avoiding the hit by enemy means. Increase in mobility is strictly connected with the increase in the dynamic loads, which affect the hull, equipment and the crew of the vehicle. In the paper, an attempt to estimate the influence of chosen parameters of the vehicle on its dynamical loads was undertaken. The analysis of professional literature, as well as the results of authors' own research were considered.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.