Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, there has been a growing interest in the use of modern IT tools in agricultural engineering. Both image analysis methods and artificial neural networks, designed to reproduce the work of the human brain, serve to build predictive and classification models, highly useful for modern agriculture. Correct identification of both the seed material and the produced crops becomes a priority of agricultural engineering, ensuring adequate efficiency and cost-effectiveness of agrotechnical operations. This article presents a project whose aim was to develop an effective neural model for qualitative identification of the variety of stored consumer potato tubers by using input data obtained in the process of digital image analysis. The designed and created artificial neural network model (multilayer perceptron), using informations in the form of selected graphic descriptors, classifies three selected varieties of edible potato (Denar, Gala, Vineta).
PL
W ostatnich latach dostrzec można wzrastające zainteresowanie wykorzystywaniem nowoczesnych narzędzi informatycznych w inżynierii rolniczej. Zarówno metody analizy obrazu, jak i sztuczne sieci neuronowe, mające odwzorowywać pracę ludzkiego mózgu, służą budowaniu modeli predykcyjnych i klasyfikacyjnych, wysoce użytecznych dla współczesnego rolnictwa. Właściwa identyfikacja zarówno materiału siewnego, jak i wytworzonych plonów, staje się priorytetem inżynierii rolniczej, zapewniając odpowiednią efektywność i opłacalność przeprowadzanych zabiegów agrotechnicznych. Niniejszy artykuł przedstawia projekt, którego celem było opracowanie efektywnego modelu neuronowego służącego do identyfikacji jakościowej odmiany magazynowanych bulw ziemniaków konsumpcyjnych przy użyciu danych wejściowych pozyskanych w procesie analizy obrazów cyfrowych. Zaprojektowany i wytworzony model sztucznej sieci neuronowej (perceptron wielowarstwowy), korzystający z informacji w postaci wybranych deskryptorów graficznych, klasyfikuje trzy wybrane odmiany ziemniaka jadalnego (Denar, Gala, Vineta).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.