Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Two single crystals with compositions Fe-Ni-Co-Al-Ta and Fe-Ni-Co-Al-Ta-B were selected and fabricated by Bridgman method. Subsequently, ingots were homogenized, oriented and subjected to a two-step heat treatment process in order to obtain fine and coherent γ' precipitates. Subsequently, superelastic cycling experiments were performed at 77 K. The next step included detailed microstructural characterization using transmission electron microscopy and high-energy synchrotron X-ray diffraction measurements together with Rietveld refinement. The results show that the number of fully reversible superelastic strains is very sensitive to the size of γ' precipitates. The smaller (3 nm) γ' precipitates ensured more superelastic response compared to material with larger γ' particles size (5 nm), in which the material did not receive its original shape after 10 cycles even after being heated.
EN
Samples prepared using various additive manufacturing methods were compared in terms of structure, texture, transformation temperature and superelastic properties. Samples manufactured using laser engineered net shaping (LENS) method showed texture several degrees deviated from the <001> build direction, however with composition near to the initial powder composition, enabling superelastic effect. The electron beam additive manufacturing (EBAM) samples showed martensitic structure at room temperature due to a shift of transformation temperatures to the higher range. This shift occurs due to a lower Ni content resulting from different processing conditions. However, EBAM method produced sharper <001> texture in the build direction and made it possible to obtain a good superelastic effect above room temperature. Intermetallic particles of size 0.5-2 mm were identified as Ti2Ni phase using EDS and electron diffraction analyses. This phase was often formed at the grain boundaries. Contrary to the LENS method, the EBAM prepared samples showed Ni-rich primary particles resulted from different processing conditions that reduce the Ni content in the solid solution thus increase the martensitic transformation temperature. Ageing at 500°C allowed for shifting the martensitic transformation temperatures to the higher range in both, LENS and EBAM, samples. It resulted from the formation of Ni rich coherent precipitates. In samples prepared by both methods and aged at 500°C, the presence of martensite B19’ twins was observed mainly on {011} B19’ planes.
EN
The quaternary Mg–9Li–2Al–0.5Sc alloy (in wt%) was prepared from pure components. After homogenization, the alloy was subjected to severe plastic deformation by KoBo extrusion and cyclic forging leading to grain refinement in the range of 0.5–2 µm of hexagonal close-packed (HCP) α phase. Deformed alloys showed high ultimate tensile strength near 200 MPa and good elongation in the range 30–40% at room temperature (RT). Large elongations close to 200% were obtained during the tensile test at a temperature of 200 °C. Deformed samples showed the presence of multiple voids confirming grain boundary sliding mechanism of deformation. Twins on {101-2} planes were identified using electron backscatter diffraction analysis, being in a good agreement with the earlier observation of Mg–Li and Mg–Sc alloys. Intermetallic phases such as cubic MgSc were identified in deformed alloys mostly within HCP α phase, whereas HCP MgSc2 particles were observed within body-centered cubic (BCC) β phase. Intermetallic phases were responsible for RT strengthening of alloys and slightly lower tensile elongation during superplastic deformation. Formation of the HCP α phase was observed within the BCC β phase in tensile deformed alloys. Atomic-level nucleation of HCP phase within the β phase was identified by the use of high-resolution transmission electron microscopy technique.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.