Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a numerical solution of the heat advection equation in a two dimensional domain using the Discontinuous Galerkin Method (DGM). The advection equation is widely used in heat transfer problems, particularly in the field of fluid dynamics. The discontinuous Galerkin method is a numerical technique that allows for the solution of partial differential equations using a piecewise polynomial approximation. In this study, DGM is applied to the heat advection equation and its effectiveness in solving the problem is investigated. The findings of this study suggest that the Discontinuous Galerkin Method is a promising approach for solving heat transfer problems in a two-dimensional domain.
EN
The paper focuses on the numerical modeling of the three-dimensional solidification process of steel using the finite element method (FEM). The model includes and discusses the formation of shrinkage cavities and the influence of the solid phase content on the feeding of the casting through the riser. The analysis assumed a critical value of the solid phase content, at which the transport of liquid phase from the riser to the casting is interrupted. The results of numerical simulation are presented to investigate the influence of this factor on the final quality of the casting. The model neglects the fluid motion in the liquid and solid-liquid regions and replaces the influence of the mold with appropriate boundary conditions.
EN
The presented paper is focused on the comparison of the Continuous and Discontinuous Galerkin Methods in terms of thermoelasticity for a cubic element. For this purpose, a numerical model of the phenomenon was built using both methods together with the Finite Element Method (FEM). The comparison of the results of numerical simulation obtained with the use of an original computer program based on the derived final set of FEM equations for both methods is presented.
EN
In this paper, the numerical model of solidification process with the motion of the liquid phase is presented. The mathematical description of the considered problem is based on the heat conduction equation with convective term and the Navier-Stokes equations with continuity equation. The numerical model uses the Finite Element Method (FEM). The simulations of the solidification process with or without the fluid motion effect are presented and discussed.
EN
The paper focuses on the mathematical and numerical modelling of the thermoelasticity problem in the three-dimensional region. The governing equations of the mathematical model are a set of equilibrium equations. The numerical model uses continuous Galerkin formulation together with the Finite Element Method (FEM). Both models are discussed in detail. The final set of FEM equations is derived. The example of numerical calculations obtained with the use of an original computer program is presented. The main goal of presented paper is to develop the alternative model to the one based on the Discontinuous Galerkin Method (DGM).
EN
The paper is focused on the mathematical and numerical approaches for the thermoelasticity problem in the three-dimensional domain. The mathematical description of considered problem is based on the second order differential equations of elasticity with the term describing thermal deformations. The numerical model uses the discontinuous Galerkin method which is widely used to solve the problems of hydrodynamics. The presented paper shows the possibility of using the mentioned method to solve the problem of thermomechanics.
EN
The presented paper is focused on the comparison of the numerical solution of the Laplace equation in a two-dimensional space with the results obtained with the use of the analytical method. The results of the numerical model are computed on the base of the Finite Element Method. The analytical solution of the considered equation is obtained using the Fourier series. Finally the results of both methods are compared in order to verify the accuracy of numerical implementation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.