Apples, like other fruits, are exposed to stress during their growth and development in the field, also during harvest and the postharvest environment (processing, storage, and transportation). The refrigeration system allows for bulk handling of food products from harvest to market, ensuring that food products are maintained in their freshness and integrity for an extended period through careful management of storage temperature and humidity. This study investigated the effects of storage on the weight loss of apples (Golden Delicious fruits harvested at maturity), under refrigerated conditions at a temperature of 5 ± 0.5°C and relative humidity of 82% and under ambient storage at a temperature of 25 ± 0.5°C and relative humidity of 60%, over 3 months. The findings revealed that the two groups of apples experienced weight reduction at different levels. Apples placed at cold storage presented a loss of weight between 3.31 g and 4.49 g; however, apples stored at ambient temperature showed a significant loss of weight between 21.90 g and 31.76 g.
The boiler is an enclosed vessel that transfers the energy from fuel combustion or electricity into hot water or steam. Then, this hot water or pressurized steam is used for transferring the heat to a certain heat process. Usually, the required hot water or steam keeps on varying throughout the day which also may be implied on the daily or monthly load. Therefore, several configurations of connecting the boiler into the solar heating system ensure the temperature of the final output. The boiler can be connected in series or parallel to improve the efficiency of the overall process as well as to reduce the running costs. This paper presents a simulation study of a solar heating system for industrial processes. Two flow-heater system configurations are designed for covering the heat demand of a pasteurising factory existing in Budapest, Hungary. The configuration “A” consists of a solar heating system for hot water preparation using in series flow heater configuration. While configuration “B” consists of the same solar system but with a parallel flow heater configuration. These system configurations are modelled using T*sol software for evaluating the system performance under the Hungarian climate from five different aspects: required collector area, glycol ratio, volume flow rate, relative tank capacity, and tank height-to-diameter ratio. According to the optimum design parameters, in series configuration is better than parallel by 3.14% at 45 m² collector area, 0.45% at 25% glycol ratio, 0.42% at 50 l/h · m² volume flow rate, 2.05% at 50 l/m² relative tank capacity, and 0.42% at 1.8 tank height-to-diameter ratio respectively. The results show that in series configuration is better in terms of solar fractions than parallel configuration from all five aspects.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.