Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Polylepis forests in the central Andes of Peru remain in hostile environments due to their location above 4000 meters of altitude. They are home to a great biodiversity with a high level of endemism and are extremely vulnerable to climate change and human pressure. Variations in rainfall and temperature have been affecting plant health. These aspects have led to the analysis of the physiological response of plants through water stress and NDVI, in dry periods and related to altitudinal gradients and slope, of five forests located in the regions of Junin and Lima, where the species Polylepis rodolfo vasquezii, P. canoi and P. flavilpila are found. Seven 15 x 21 m plots and 10 sub-plots were established, distributed in the lower, middle and upper parts of the forest. The water potential of leaflets was measured by a Scholander pressure pump in a Pascale unit, microclimate variations by means of installed soil and air humidity and temperature sensors; the NDVI by means of multispectral images captured by an unmanned airborne vehicle. Water stress was different among species and changed according to the altitudinal gradient, soil hydrological variation and temperature. Leaflet size adaptation related to stress changes and a high correlation of NDVI with plant stress status were observed.
EN
The tall grass vegetation in the Andean grassland ecosystems covers the largest area compared to other types of vegetation such as Puna grass, wetland and others. The grasslands are frequently set on fire by livestock farmer, seriously affecting the ecosystem. One way to mitigate this problem is to use these species as a source of plant fibre, which can be economically useful to the interests of the livestock family without affecting the ecosystem. To advance in this approach, it is necessary to know the functional characteristics of the plants; therefore, we evaluated the aerial primary productivity, plant density per m2, basal cover, aerial cover and leaf height, whose data were analysed using the generalised linear mixed model and the correlation between these variables with the physical-chemical characteristics of the soil, by means of principal component analysis and canonical correlation, in seven species of grassland and seven control plots, located between 3860 and 4333 metres above sea level. The results showed significant differences for p=0.001 between species, and between plots, and a canonical correlation grouped in two clusters that showed the differentiated importance of soil elements with the phytomass produced.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.