Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS), are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM), is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD) are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.
EN
The e-navigation strategy of the International Maritime Organization (IMO) aims to improve the safety of maritime traffic by increasing cooperation between several maritime stakeholders. The COSINUS (Bolles et al., 2014) project contributes to such a strategy by enabling an automated data exchange (observations, routes and maneuver plans) between ship-side and shore-side navigational systems, developing useful sensor fusion applications upon the new information available from data exchange and introducing new Human Machine Interfaces (HMIs) to support the users of navigation systems. The project shows potential for improvement in maritime traffic safety by ensuring continuous awareness to all participants involved through sensor fusion applications, i.e. by providing all participants (mobile and stationary navigation systems) with a complete view at all times. These applications include detection of critical situations like radar shadowing areas, early and accurate prediction of potential collisions or closest point of approach (CPA) based on the exchanged routes, and improving the accuracy of radars by ensuring high quality data for obstructed or far away routes. The new HMI concepts introduced within the COSINUS project aim at highlighting critical maritime traffic situations. Thus, the users of such navigation systems supported with COSINUS facilities can easily detect such critical situations and react efficiently to avoid collisions, possible crowded areas and inefficient routes.
3
Content available Save maritime systems testbed
EN
"Safe voyage from berth to berth" — this is the goal of all e-navigation strains, driven by new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. To facilitate these efforts suitable engineering and safety/risk assessment methods have to be applied. Understanding maritime transportation as a sociotechnical system allows system engineering methods to be applied. Formal and simulation based verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a reference port and waterway. Additionally, it contains an experimental Vessel Traffic Services (VTS) implementation and a mobile integrated bridge enabling in situ experiments for technology evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with virtual simulation based assessment and ending in physical real world demonstrations.
PL
„Bezpieczna podróż od nabrzeża do nabrzeża” — to cel całego procesu e-nawigacji, napędzanego nowymi technologiami, nową infrastrukturą i nową organizacją pracy na mostku, na lądzie, ale także w technologii chmury znanej z informatyki. By ułatwić te wysiłki, należy zastosować również odpowiednie metody ocena ryzyka. Rozumiejąc transport morski jako system socjotechniczny, można do tych celów zastosować metody inżynierii systemów. Formalna ocena ryzyka, a także oparta na symulacjach weryfikacja i walidacja technologii e-nawigacji to ważne metody oceny bezpieczeństwa i niezawodności systemu. Modelowanie i zestaw narzędzi symulacyjnych HAGGIS okazują się odpowiednimi instrumentami do opisu systemu i formalnej analizy ryzyka. Wyznaczają ramy dla modelowania procesu, sporządzenia drzewa błędów i generowania wykazu zagrożeń, jak również otoczenia fizycznego i symulacji ruchu morskiego. HAGGIS jest wspierany przez rzeczywisty poligon testowy LABSKAUS, który implementuje port i drogi wodne. Dodatkowo obejmuje on eksperymentalny system nadzoru ruchu (VTS) oraz mobilny zintegrowany mostek umożliwiający realne eksperymenty dla oceny technologii, testowania i demonstracji. W artykule opisano zintegrowane, spójne podejście do rozwijania nowych technologii e-nawigacji, zaczynając od wirtualnej symulacji, a kończąc na demonstracjach w fizycznej rzeczywistości.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.