Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents an analysis of the sustainable development of generation sources in the Polish National Electric Power System (NEPS). First, the criteria for this development were formulated. The paper also discusses the current status of generation sources, operating in power plants and combined heat and power (CHP) plants of NEPS. Furthermore, it includes a prediction of power balance in NEPS, determining; predicted electricity gross use, predicted demand for peak capacity during the winter peak, predicted demand for peak capacity during the summer peak and required new capacity of centrally dispatched generation units (CDGUs) in 2025, 2030, 2035 and 2040 that would ensure NEPS operational security. Twenty prospective technologies of electricity generation and combined electricity and heat production were analyzed. These were divided into three groups: system power plants, high- and medium-capacity combined heat and power (CHP) plants, as well as small-capacity power plants and CHP plants (dispersed sources). The unit costs of electricity generation discounted for 2021 were calculated for the analyzed technologies, taking the costs of CO2 emission allowances into account. These costs include: capital costs, fuel costs, maintenance costs, operation costs and environmental costs (CO2 emission allowances). This proceeds to a proposal of a program of the sustainable development of generation sources in NEPS, which includes the desired capacity structure of power plants and CHP plants, and the optimal structure of electricity production in 2030 and 2040. The results of calculations and analyses are presented in tables and figure.
PL
W artykule przedstawiono analizę zrównoważonego rozwoju źródeł wytwórczych w Krajowym Systemie Elektroenergetycznym (KSE). Sformułowano kryteria zrównoważonego rozwoju systemu elektroenergetycznego. Przedstawiono aktualny stan źródeł wytwórczych w KSE, pracujących w elektrowniach i elektrociepłowniach. Opracowano prognozę bilansu mocy w KSE, wyznaczając: prognozowaną wartość zużycia elektrycznej brutto, obciążenia KSE w szczycie zimowym i szczycie letnim oraz wymaganej mocy JWCD i mocy źródeł rozproszonych, narastająco na lata 2025, 2030, 2035 i 2040, dla bezpieczeństwa pracy KSE. Zdefiniowano 20 przyszłościowych technologii wytwarzania energii elektrycznej i skojarzonego wytwarzania energii elektrycznej i ciepła, podzielonych na trzy następujące grupy: elektrownie systemowe, elektrociepłownie dużej i średniej mocy oraz elektrownie i elektrociepłownie małej mocy (źródła rozproszone). Dla wybranych do analizy technologii wytwórczych wyznaczono jednostkowe, zdyskontowane na 2021 rok, koszty wytwarzania energii elektrycznej, z uwzględnieniem kosztów uprawnień do emisji CO2. W kosztach tych uwzględniono: koszty kapitałowe, koszty paliwa, koszty remontów, koszty obsługi i koszty środowiskowe. Opracowano propozycję programu zrównoważonego rozwoju źródeł wytwórczych w KSE, wyznaczając pożądaną strukturę mocy elektrowni i elektrociepłowni oraz produkcji energii elektrycznej w latach 2030 i 2040.
PL
Przedstawiono historię Wydziału Elektrycznego Politechniki Poznańskiej, począwszy od działającego od 1929 roku Wydziału Elektrycznego Państwowej Wyższej Szkoły Budowy Maszyn i Elektrotechniki. Od 1945 roku Wydział Elektryczny funkcjonował w ramach Szkoły Inżynierskiej, a od 1955 roku w ramach utworzonej w tamtym roku Politechniki Poznańskiej.
EN
The paper presents a 90-year history of the Poznań University of Technology (PUT) Faculty of Electrical Engineering, in three periods: 1929–1939, as the Faculty of Electrical Engineering at the Government Higher School of Machine Construction and Electrotechnics (Państwowa Wyższa Szkoła Budowy Maszyn i Elektrotechniki), 1945–1955, as the Faculty of Electrical Engineering of the School of Engineering (Szkoła Inżynierska), and 1955–2019, as the PUT Faculty of Electrical Engineering. Between 1929 and 1939, students of the Faculty of Electrical Engineering at the Government Higher School of Machine Construction and Electrotechnics were trained in Electrotechnics and graduated with the degree of technologist. Between 1945 and 1955, the Faculty of Electrical Engineering of the School of Engineering offered courses in Electrotechnics and Electronics, subsequently granting its graduates the degree of engineer. Between 1955 and 2019, the PUT Faculty of Electrical Engineering offered teaching in: Electrotechnics, Automatics and Robotics, IT, as well as Telecommunication and Power Engineering. Its graduates left the university as Masters of Science and Engineering (M.Sc. Eng). Irrespective of teaching the PUT Faculty of Electrical Engineering has been active in research and academics’ training since 1955. The Faculty gained the right to grant doctoral degrees in 1966, and habilitation degrees in science in 1969.
PL
W artykule przedstawiono analizę efektywności energetycznej i ekonomicznej perspektywicznych dla polskiej elektroenergetyki technologii wytwórczych. Analiza została wykonana dla 21 technologii. Jako wielkości charakteryzujące ich efektywność energetyczną zostały wyznaczone sprawność wytwarzania energii elektrycznej, dla elektrowni systemowych, a sprawność wytwarzania energii elektrycznej w skojarzeniu, sprawność wytwarzania ciepła w skojarzeniu oraz oszczędność energii pierwotnej, dla elektrociepłowni dużej, średniej i małej mocy. Dla technologii wykorzystujących paliwa kopalne została wyznaczona również jednostkowa emisja CO2. Jako kryterium oceny efektywności ekonomicznej, dla wszystkich analizowanych technologii wytwórczych, zostały wyznaczone jednostkowe, zdyskontowane na 2019 rok, koszty wytwarzania energii elektrycznej.
EN
The paper presents the analysis of energy and economic effectiveness of prospective generation technologies for Polish electric power industry. The analysis has been done for 21 electricity generation technologies applied in system power plants, large and medium capacity combined and heat power (CHP) plants, and small capacity power plants, and small capacity CHP plants. The following quantities to characterize their energy effectiveness have been determined. For the system power plants, it is efficiency of electric energy generation. For large, medium and small capacity CHP plants, it is efficiency of combined electric energy generation, efficiency of combined heat generation, and primary energy savings. Unitary CO2 emission has also been determined for the technologies using fossil fuels. Unitary costs of electric energy generation, as discounted for 2019, have been determined for all the analyzed generation technologies as a criterion of economic effectiveness evaluation.
EN
The paper presents an analysis of energy and economic effectiveness of the combined heat and power (cogeneration) technologies fired with natural gas that may be deemed prospective for the Polish electric power system. The current state of the cogeneration technologies fired with natural gas in Poland is presented. Five cogeneration technologies fired with natural gas, prospective from the point of view of the Polish electric power system, were selected for the analysis. Namely, the paper discusses: gas-steam combined heat and power (CHP) unit with 3-pressure heat recovery generator (HRSG) and steam interstage reheat, gas-steam CHP unit with 2-pressure HRSG, gas-steam CHP unit with 1-pressure HRSG, gas CHP unit with small scale gas turbine, operating in a simple cycle and gas CHP unit with gas engine. The following quantities characterizing the energy effectiveness of the cogeneration technologies were selected for the analysis: electricity generation efficiency, heat generation efficiency, primary energy savings (PES) and CO2/ unit emission. The economic effectiveness of particular technologies was determined based on unit electricity generation costs, discounted for 2019, including the costs of purchasing CO2/ emission allowances. The results of calculations and analyses are presented in a table and on a figures.
PL
W artykule przedstawiono aktualny stan kogeneracyjnych źródeł wytwórczych, opalanych gazem ziemnym w Polsce oraz analizę efektywności energetycznej i ekonomicznej tych źródeł. Zdefiniowano 5 perspektywicznych kogeneracyjnych technologii, opalanych gazem ziemnym, wybranych do analizy, a mianowicie: ciepłowniczy blok gazowo-parowy z 3-ciśnieniowym kotłem odzysknicowym i międzystopniowym przegrzewaniem pary, ciepłowniczy blok gazowo-parowy z 2-ciśnieniowym kotłem odzysknicowym, ciepłowniczy blok gazowo-parowy z 1-ciśnieniowym kotłem odzysknicowym, ciepłowniczy blok gazowy z turbiną gazową małej mocy pracującą w obiegu prostym oraz ciepłowniczy blok gazowy z silnikiem gazowym. Dla wybranych do analizy technologii kogeneracyjnych opalanych gazem ziemnym, wyznaczono wielkości charakteryzujące ich efektywność energetyczną, takie jak: sprawność wytwarzania energii elektrycznej w skojarzeniu, sprawność wytwarzania ciepła w skojarzeniu oraz oszczędność energii pierwotnej, a także jednostkową emisję CO2/. Dla analizowanych technologii kogeneracyjnych opalanych gazem ziemnym wyznaczono również jednostkowe, zdyskontowane na 2019 rok, koszty wytwarzania energii elektrycznej, z uwzględnieniem kosztów uprawnień do emisji CO2/, jako wielkości charakteryzujące ich efektywność ekonomiczną. Wyniki obliczeń i analiz przedstawiono w tabelach i na rysunkach. Artykuł jest zakończony wnioskami wskazującymi na zalety technologii kogeneracyjnych dla elektrociepłowni dużej, średniej i małej mocy opalanych gazem ziemnym.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.