Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Input-output linearization by state feedback is applied to a flux-controlled active magnetic bearing (AMB) system, operated in the zero-bias mode. Two models of the AMB system are employed. The first one is described by the third-order dynamics with a flux-dependent voltage switching scheme, whereas the second one is the fourth-order system, called self-sensing AMB, since it does not require the measurement of the rotor position. In the case of that system we had to find the flat outputs to guarantee its stability. The proposed control schemes are verified by means of numerical simulations performed within the Matlab environment.
EN
The present study concerns the analysis of using the integro-differential fractional operators in the process of modelling of electrical systems. As the object of study, the RC circuit with the ultracapacitor was used. A mathematical model of the super capacitor has been introduced, based on the integro-differential fractional order operator. Throughout the modelling it was assumed that the ultracapacitor was ideal. The main goal of the work was to carry out the experimental tests. Static and dynamic characteristics of the RC circuit with the ultracapacitor were determined with a prepared laboratory test rig. The obtained experimental results were compared with simulation tests of the ultracapacitor dynamics. The analysis, modelling and the obtained results allowed for the assessment of applicability of the fractional order operators in modelling of electrical systems. The proposed fractional order model yielded more precise description of dynamic properties of the system.
EN
The study is motivated by the considerations concerning implementation of nonuniform sampling regarding the reallife objects. It is shown that nonuniform adaptive sampling switch algorithm can ensure a reduction in the number of taken samples and does not exert negative influence on the quality of the system control. Experiment was performed with 24VDC permanent magnet motor with encoder as a plant. Signals from the encoder were used for rotational speed calculations. The results of experiment are included.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.