Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Twelve Years of QBF Evaluations : QSAT Is PSPACE-Hard and It Shows
EN
Twelve years have elapsed since the first Quantified Boolean Formulas (QBFs) evaluation was held as an event linked to SAT conferences. During this period, researchers have striven to propose new algorithms and tools to solve challenging formulas, with evaluations periodically trying to assess the current state of the art. In this paper, we present an experimental account of solvers and formulas with the aim to understand the progress in the QBF arena across these years. Unlike typical evaluations, the analysis is not confined to the snapshot of submitted solvers and formulas, but rather we consider several tools that were proposed over the last decade, and we run them on different formulas from previous QBF evaluations. The main contributions of our analysis, which are also the messages we would like to pass along to the research community, are: (i) many formulas that turned out to be difficult to solve in past evaluations, remain still challenging after twelve years, (ii) there is no single solver which can significantly outperform all the others, unless specific categories of formulas are considered, and (iii) effectiveness of preprocessing depends both on the coupled solver and the structure of the formula.
EN
From an empirical point of view, the hardness of quantified Boolean formulas (QBFs), can be characterized by the (in)ability of current state-of-the-art QBF solvers to decide about the truth of formulas given limited computational resources. In this paper, we start from the problem of computing empirical hardness markers, i.e., features that can discriminate between hard and easy QBFs, and we end up showing that such markers can be useful to improve our understanding of QBF preprocessors. In particular, considering the connection between classes of tractable QBFs and the treewidth of associated graphs, we show that (an approximation of) treewidth is indeed a marker of empirical hardness and it is the only parameter which succeeds consistently in being so, even considering several other purely syntactic candidates which have been successfully employed to characterize QBFs in other contexts. We also show that treewidth approximations can be useful to describe the effect of QBF preprocessors, in that some QBF solvers benefit from a preprocessing phase when it reduces the treewidth of their input. Our experiments suggest that structural simplifications reducing treewidth are a potential enabler for the solution of hard QBF encodings.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.